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the smooth approximation Is, the fuzzy edge map Ẽ, the binary edge map
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plot of Ĵ (ε, α) for 0 ≤ ε ≤ 1
4 and 0 ≤ α ≤ 2 with µ = 1

4 . . . . . . . . . . . . 94

8.1 Two examples of admissible shapes. Any regular curve with curvature
bounded from above by 1

h0
and pinch distance (symbolized by arrows in

the sketches) bounded from below by h0 is in S. Shown is a closed (left)
and an open curve (right). Sketches are patterned on Figure 4 in [CFK04]. 101

10.1 Artificial images simulating the effect of contrast agent on the kidneys in
a DCE-MRI sequence. Shown is an image before (a), during (b) and after
(c) the admission of contrast agent. . . . . . . . . . . . . . . . . . . . . . . 114

10.2 First member of the artificial kidney MR-image sequence. Shown is the
image (a), the (inverted) edge map computed by Algorithm 5.1 using β = 5,
δ = 0.2 and ϑ = 1 (b) and its blurred version used as reference edge map
in Algorithm 9.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

10.3 Illustration of the edge map based registration approach. The first column
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1
Introduction

Image processing has become an increasingly important scientific field over the last two
decades. The technical progress in image acquisition devices has entailed a growing de-
mand for specialized sophisticated methods to postprocess recorded visual data. One
example is the fusion of multiple images from various sources to obtain a comprehensive
view, e.g., combining magnetic resonance and computerized tomography data to aid in
surgery [FHM00, Chap. 8]. Another example is the extraction of certain features by iden-
tifying like objects in images, e.g., comparing patient data to an idealized atlas to identify
tissue groups [FHM00, Chap. 17]. The methods used are as numerous as the applications
in practice. May it be medicine, astronomy, biology, robotics, video games or weather
forecasts, image processing nowadays is a vast area that makes use of a wide range of
modern techniques in mathematics, including functional analysis, differential geometry
and statistics.
This work approaches the problems of image segmentation and image registration against
the background of biomedical applications. The starting point of the research work that
led to this dissertation was an application coming from biophysics. The objective was
to map a Purkinje fiber network in the endocardium of one heart to the endocardium
of another heart [FKPP11]. The edge maps arising were mapped one to the other by
representing these zero area sets as diffuse images which have positive measure supports.
An elastic registration approach was developed and successfully applied to the images thus
obtained. The convincing results achieved by this strategy raised the idea of developing
an extension to general edge maps. The goal was to design a method able to register
images that manifest considerable intensity variations. For example images from a dynamic
contrast enhanced magnetic resonance image sequence (DCE-MRIs) taken before, during
and after the appearance of contrast agent have this property. If binary edge maps of such
images were available, then by transforming these edges to diffuse surfaces, the approach
developed to register diffuse images could be applied.
Thus, the second part of the research consisted in designing a novel approach for computing
binary edge maps. Inspired by state-of-the-art segmentation techniques, a framework of
cost functionals revolving around characteristic functions, i.e., edge maps, was designed.
Based on variational calculus the associated optimality formulations were established. In
contrast to existing methods, the edges obtained were truly binary, i.e., no thresholding
had to be performed. This dissertation is a comprehensive account of the research work
described here, carried out over a three-year period.
Chapter 2 presents an introduction to image segmentation and discusses modern and es-
tablished techniques relevant in the context of this work. The review of existing methods
is precise in formulation but brief in presentation and is purely intended to provide a
compact overview of mathematical tools involved without being excessively dense in the-
oretical details. In Chapter 3 the proposed approach for the computation of binary edge

1



1 Introduction

maps is introduced by a one-dimensional example. The presentation given focuses solely
on modeling considerations, while deliberately omitting many mathematical details for the
sake of a clear presentation of ideas. Chapter 4 then fills these gaps and presents a rigorous
analysis of the introduced approach. We prove existence and uniqueness of minimizers,
show that the proposed iteration has a fixed point and establish continuity of computed
results with respect to initial conditions. A finite element discretization of the introduced
approach is discussed in Chapter 5. We show existence and uniqueness of solutions in
the discrete setting and prove their convergence to the respective quantities in the con-
tinuum for successively smaller step sizes. Further, the behavior of the approach in the
limit of vanishing regularization is discussed. We prove consistency for vanishingly small
parameter choice not only in the continuum but also in the discrete setting. Chapter 6
presents an extensive investigation of practical results obtained by the proposed approach
and discusses its performance compared to existing segmentation techniques.
Chapter 7 briefly introduces the concept of image registration and derives the similarity
measure and regularization term used in the proposed cost functional. By means of a
one-dimensional example the developed registration strategy for edge maps based on suc-
cessive deblurring is explained. Previously published theoretical results are summarized in
Chapter 8. Existence proofs covering minimizers of the introduced registration functional
as well as asymptotic considerations in the limit of vanishing deblurring are discussed.
Furthermore, optimality conditions and a solution scheme are established. Chapter 9 in-
troduces the discrete setting of the registration approach and addresses algorithmic details.
Finally, Chapter 10 presents results obtained by embedding the introduced approach for
the computation of binary edge maps in the discussed registration framework. It is shown
that a combination of the developed strategies can indeed successfully register image se-
quences that are challenging for classical intensity based registration techniques. The
notation used throughout this work is summarized in Appendix A. Classical results that
are used frequently are listed in Appendix B. Finally, Appendix C presents some items
that have been left out in the main part of the text mostly for the sake of readability.

2



2
The Image Segmentation Problem

One of the most challenging problems in image processing is ironically one of the easiest
for the human eye: image segmentation. Ever since techniques from computer vision
and machine learning have been used to identify objects in still images and videos it
became quite clear that the notion of image segmentation is ambiguous [AK06, Chap. 4].
Depending on the given image the human eye typically segments it either based on objects
or homogeneous regions. Figure 2.1 illustrates these two notions of image segments. This
observation motivates the two general strategies in image segmentation. One approach
uses application specific considerations to model a simplified approximation to the raw
image. This simpler image is then separated by sharp edges. The second strategy employs
a priori information about the problem to determine and extract significant contours out of
the raw image. Although these two approaches follow different ideas the striking similarity
in each case is the importance of edges. Thus image segmentation and edge detection are
closely intertwined.
In this work both strategies will be combined: in the following we will derive a model to
compute a smooth approximation Is of a given image Ĩ. Based on this approximation a
segmentation of an associated fuzzy edge map Ẽ will be used to obtain sharp binary edges
for the raw image Ĩ.

2.1 Definition of an Image

In mathematics images are typically modeled as functions defined on some bounded do-
main Ω ⊂ R2 mapping to Rn with n ≥ 1. More specifically let Ω := (0, 1)2 be the image
domain, I ∈ L1(Ω) and define the total variation of I by

ˆ
Ω
|DI| := sup

{ˆ
Ω
I∇ · ϕdx

∣∣∣ϕ ∈ C1
0 (Ω) : ‖ϕ‖L∞(Ω) ≤ 1

}
,

and introduce the space of functions of bounded variations (see, e.g., [AK06, Sec. 2.2.2])

BV (Ω) :=

{
I ∈ L1(Ω)

∣∣∣∣ˆ
Ω
|DI| <∞

}
.

We consider images to be elements of BV (Ω). Note that I ∈ BV (Ω) may exhibit discon-
tinuities. Thus in contrast to classical Sobolev spaces the gradient of I is not understood
as a function but rather as a measure [AK06, Sec. 2.2]. This observation will play an
important role later. Though being an object in the continuum of functions this model is
rooted in digital imaging. A digital image is a discrete quantity defined on a grid. The cells
of this grid are usually called pixels, the size of the grid is the image resolution. Around
the year 2010 images from an average digital consumer camera had a resolution of about

3



2 The Image Segmentation Problem

Figure 2.1: Two notions of image segmentation. An image segmented by a human test subject
(left), part of the Berkeley Segmentation Dataset (a collection of 12 000 hand-labeled
segmentations of 1 000 Corel dataset images from 30 human subjects) [MFTM01]. Edges
computed by the method introduced in this work (right).

ten Megapixels which usually corresponds to the grid size 3648×2736, i.e., 9 980 928 pixels
total. The value assigned to each pixel depends on the kind of image at hand. One of the
simplest ways to store a color image, for instance, is to assign a three-dimensional vector
representing the channels red, green and blue to each pixel. More complex formats take
a fourth channel, sometimes called alpha channel, allowing for transparency effects. For
the sake of simplicity only gray-scale images are considered in this work. Thus the gray-
scale intensity value of the image at each pixel is expressed not in terms of a vector but
a number. An eight bit gray scale image, for instance, uses unsigned bytes, i.e., numbers
between 0 (black) and 255 (white), to save each pixel’s intensity value. Thus 28 = 256
shades of gray can be displayed. In terms of the continuum of the associated mathe-
matical models this means that we only consider real scalar valued functions. Figure 2.2
shows an artificial image represented as a gray scale map and as surface plot of a function.

Figure 2.2: An artificial image represented as a gray scale map (left) and as a surface (right).

4



2.2 Definition of an Edge

Figure 2.3: Influence of noise on an image. Shown is an artificial image corrupted by 5% additive
Gaussian white noise (left) and the associated surface plot representation (right).

In the following we will always refer to images as functions of bounded variation map-
ping from Ω ⊂ R2 to R unless explicitly stated otherwise.

2.2 Definition of an Edge

With the connection of segments and edges the first step in designing a segmentation
approach is to establish a notion of edges appropriate for the task at hand. The biomedical
applications of this work lend themselves better to the kind of edges seen in the right panel
of Figure 2.1. Thus recall the surface plot depicted in Figure 2.2. Note that edges of the
image shown correspond to jumps in the surface plot. We turn this heuristic observation
into a more formal definition. The gradient of an image I ∈ BV (Ω) can be identified with
a vector valued Radon measure that allows a decomposition into an absolutely continuous
part, a jump part and a Cantor part [AK06, Sec. 2.2.3]. The jump part can be characterized
by a corresponding jump set SI ⊂ Ω. We identify edges of an image with the jump set of
its gradient. In the continuum this definition corresponds to the intuitive notion of edges.
However, its direct application to the discrete setting is problematic. Since digital images
are piecewise constant functions defined on a grid, any pixel whose intensity value is not
exactly equal to those of its neighbors gives rise to an edge at the pixel’s corresponding
boundary. Hence in the discrete setting one usually relies on a more heuristic interpretation
of jumps in an image. Typically an edge is thus considered to be a collection of points
where the magnitude of the gradient ∇Ĩ is ”large”. The following investigation of this
particular understanding of an edge is guided by the review in [CS05, Sec. 7.2.1]. In this
edge paradigm the simplest edge detector is given by determining the set

Γ(τ) :=
{
x ∈ Ω : |∇Ĩ(x)| ≥ τ

}
,

for some threshold τ > 0. Obviously, this formulation has some severe shortcomings. First
and most significant is its sensitivity to scaling. Since the parameter τ is chosen entirely
independent from the image Ĩ any multiple κĨ with κ ∈ R yields a potentially different

5



2 The Image Segmentation Problem

(a) (b) (c)

Figure 2.4: Result of Canny’s Edge Detector applied to the artificial image (a) for τ = 0.05 (b) and
τ = 0.04 (c).

edge set Γ(τ). However, scaling Ĩ (and thus ∇Ĩ) by κ has no influence on the formation
of the image’s edges. For similar reasons Γ(τ) is also very prone to noise in Ĩ. Consider
the noise corrupted artificial image shown in Figure 2.3. The human eye easily recognizes
that the noisy image has the same edges as the noise free version shown in Figure 2.2.
Observe, however, that Ĩ exhibits many scattered jumps, i.e., isolated local maxima of
∇Ĩ, illustrated in the right plot of Figure 2.3. These disconnected points of significantly
different intensity make a hard thresholding approach quite difficult and may thus severely
impair Γ(τ).
A very popular remedy for these problems is as follows. Let gn := ∇Ĩ/|∇Ĩ| denote the
normalized gradient of Ĩ. Instead of working with (the possibly noisy) raw image Ĩ itself
consider a smooth approximation Iσ of Ĩ. Thus let Iσ be the convolution of Ĩ with a
Gaussian kernel. Then

ΓCE(τ) :=

{
x ∈ Ω

∣∣∣∣max
gn

|∇Iσ| ∧ |∇Iσ| ≥ τ
}
,

is the famous Canny Edge Detector [Can83] introduced in 1983. The remarkable idea
behind ΓCE(τ) is to locally maximize |∇Iσ| along gn. Thus the set ΓCE(τ) consists of
points at which the gradient magnitude is maximal in the gradient direction and not
just ”large” compared to some hard threshold. This restriction together with the usage
of the mollification Iσ instead of Ĩ makes it much less likely that noise corruption, i.e.,
isolated large gradient magnitudes, leads to erroneously detected edge points. However,
even more importantly, by tracing edges along gradient vectors and not only relying on
large gradients, ΓCE(τ) becomes insensitive to scaling.
Nevertheless, practical implementations of Canny’s edge detector still crucially rely on well
performed thresholding (compare, e.g., [RE95]). Furthermore, while being much less sen-
sitive to changes in τ than the naive detector Γ(τ) edge sets ΓCE(τ) may vary significantly
for different threshold values. Figure 2.4 depicts this behavior. Thus, albeit being one
of the most widely used edge detectors nowadays, the biggest drawback of ΓCE(τ) is still
its dependence on the threshold τ . Hence one of the objectives of this work is to develop
a segmentation algorithm that does not rely on any thresholding techniques. However,
considering a smooth approximation rather than the raw image itself is a technique that
prevailed in image segmentation and is also utilized in this work.
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(a) (b) (c)

Figure 2.5: K-means segmentation of the Shepp–Logan phantom [SL74]. Panel (a) shows the raw
image. Note that the image is piecewise constant. Panel (b) shows the edges of the
K-means segments superimposed on the raw image. Panel (c) depicts the K-means
approximation IKM.

2.3 Approximating the Raw Image

One of the simplest ways to approximate a given image Ĩ such that sharp edges are ob-
tained is the method of K-means clustering. We denote by {Ωk}Kk=1 a disjoint partitioning

of the image domain Ω, i.e., Ω = ∪̇Kk=1Ωk, which means Ω = ∪Kk=1Ωk such that Ωi∩Ωj = ∅
if i 6= j. The approach of K-means clustering constructs an approximation IKM of Ĩ such
that IKM = Ik on Ωk for some Ik ∈ R. Thus IKM =

∑K
k=1 Ikχk where χk denotes the

characteristic function of Ωk. Formally IKM is a solution of

min
{Ik},{χk}

ˆ
Ω

∣∣∣∣∣
K∑
k=1

Ikχk − Ĩ

∣∣∣∣∣
2

dx s.t. Ω = ∪̇Kk=1Ωk.

Note, however, that in practice IKM is usually computed by an iterative refinement algo-
rithm (see, e.g., [Bis06, Sec. 9.1] for a detailed review). Based on its intensity value a pixel
of Ĩ is assigned to the segment Ωk that has the closest mean value Ik. This procedure is
often referred to as Assignment Step. After each pixel has been associated to a segment
the mean intensity value Ik of each Ωk is recalculated in the so-called Update Step. As
soon as the segments Ωk cease to change the algorithm terminates. Although the compu-
tational performance of this method is usually very good it is purely heuristic and cannot
be guaranteed to converge to a global minimum in general [Bis06, p. 425]. Furthermore,
the quality of the final result IKM strongly depends on the initialization of segments and
associated means. Figure 2.5 shows a K-means segmentation of some exemplary image.
However, besides these practical problems, K-means clustering also has some serious the-
oretical shortcomings. First of all the computation of mean value clusters is based on the
assumption of piecewise constancy of the raw image Ĩ. The segmentation performance of
K-means severely degenerates for images violating this assumption or in the presence of
noise. To illustrate this behavior, Figure 2.6 depicts a one-dimensional example. The raw
data Ĩ (shown in black) is a piecewise linear function on (0, 1) but obviously not piecewise
constant. A natural choice for the optimal number of segments for this example is two,
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2 The Image Segmentation Problem

Figure 2.6: The importance of piecewise constancy for the performance of K-means: a 1D problem.
Shown is Ĩ (black), the approximation IKM (blue) and the characteristic function χ (red)
of one segment (K = 2).

such that Ω = Ω1 ∪Ω2 with Ω1 =
{
x ∈ Ω

∣∣∣Ĩ(x) = 0
}

and Ω2 =
{
x ∈ Ω

∣∣∣Ĩ(x) 6= 0
}

. Thus

we set K = 2 to obtain the wanted segmentation that separates the two ramps seen in the
plot such that

(2.1) IKM|Ω1 =
1

|Ω1|

ˆ
Ω1

Ĩ(x) dx and IKM|Ω2 =
1

|Ω2|

ˆ
Ω2

Ĩ(x) dx.

However, since Ĩ|Ω2 is strictly monotone the method of K-means clustering results in an
unwanted segmentation. The red line shows the characteristic function χ of one computed
segment, i.e., χ = 0 on the first segment and χ = 1 otherwise. Though the right ramp
of Ĩ is segmented correctly the leftmost part of its other ramp has been erroneously cut
out and assigned to Ω1. Thus Ω1 as computed by K-means contains nonzero regions of Ĩ.
This makes the approximation IKM (shown in blue) strictly positive on the whole of Ω and
hence the expected mean value approximation (2.1) is not satisfied. Thus violating the
assumption of piecewise constancy may indeed severely impair the outcome of K-means.
Note that setting K = 3 is not a remedy here since this would introduce an unwanted
third segment.
This leads to a further drawback of the K-means clustering approach: the number of
segments K has to be specified a priori. Depending on the given image Ĩ choosing K
may be non-trivial: if K is too small, distinct objects may be lumped together in the
same segment (see Figure 2.7 (b) and (c)). Conversely, if K is too large the algorithm
tends to divide the image into an unnaturally large number of pieces, where all segments
are necessarily disjoint but a given segment consists of many disconnected components
(Panels (e) and (f) of Figure 2.7). Perhaps the most serious drawback of the K-means
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approach is, however, that irregularity of segments is not penalized. Thus very complicated
edges exhibiting, e.g., oscillatory behavior, may arise if the image Ĩ is not smooth. This
renders the algorithm almost useless for noisy data or images exhibiting oscillatory textures
as can be seen in the bottom row panels of Figure 2.7. Though this may be remedied to
some degree by preprocessing (discussed in the next section) the raw image Ĩ, regularity
of segments generated by K-means cannot be imposed in general.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2.7: Performance of K-means on the (not piecewise constant) image depicted in Panel (a).
A favorable segmentation is shown in Panel (d). The middle image in the top row shows
the boundaries of segments computed by K-means clustering with K = 2 superimposed
on the raw image. Panel (c) depicts the corresponding reconstruction IKM. The same
format is used in Panels (e) and (f) for the case K = 9 and in Panels (h) and (i) for
the case K = 3. The bottom row illustrates the performance of K-means applied to the
image (g), obtained by adding 5% Gaussian noise to the image in (a).

2.4 Edge Preserving Preprocessing

We have seen that noise corruption poses a substantial problem in the context of edge
detection. A natural way to overcome difficulties arising from noisy input data is to
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(a) (b) (c)

Figure 2.8: Denoising results obtained by minimizing JTA. Shown is an artificial image corrupted
by 5% additive Gaussian white noise (a) and a minimizer of JTA for ν = 1e − 5 (b) and
ν = 1e− 4 (c).

preprocess the raw image in a way that diminishes noise degradation. This processing is
called image restoration or image denoising (see, e.g., [CS05, Chap. 4]). The first step
to approaching this problem is to set up a mathematical framework that models noise
corruption of an image. Thus assume Iorig is the unknown original image, Ĩ is again the
(measured) raw image and η is some noise term. One of the simplest models linking these
three quantities is the following linear relation

(2.2) Ĩ = Iorig + η.

Since we know nothing about the noise η, recovering Iorig from Ĩ by relying solely on
the model (2.2) is a complex task. If η is white Gaussian noise then following the Max-
imum Likelihood Principle (compare [AK06, Sec. 3.2.1]), a first attempt to compute an
approximation of Iorig is to solve the least squares problem

(2.3) inf
I

ˆ
Ω

1

2

∣∣∣Ĩ − I∣∣∣2 dx.
Note that the global minimum of this problem is zero which is attained at I = Ĩ. Thus
this approach is not feasible here. A quite natural remedy in this situation is provided by
the concept of regularization. The idea is to not only impose data fidelity as in (2.3) but
to also enforce wanted properties of a solution by introducing an appropriate penalty term
[AK06, Sec. 3.2.2]. Since the objective is to remove noise from Ĩ a reasonable demand
on solutions is to have a low gradient (compare the discussion on isolated large gradient
magnitudes in Section 2.2). Following this concept consider the optimization problem to
minimize

JTA[I] :=
1

2

ˆ
Ω

1

ν

∣∣∣Ĩ − I∣∣∣2 + |∇I|2 dx =
1

2ν

∥∥∥Ĩ − I∥∥∥2

L2(Ω)
+

1

2
‖∇I‖2L2(Ω) ,

where ν > 0 is a weighting parameter. A similar functional was first published in 1977
by Tikhonov and Arsenin [TA77]. The first term in JTA is a so-called data fidelity term
ensuring that the computed approximation I is ”close” to the given image Ĩ. The sec-
ond part of JTA is the so-called regularization term that penalizes large gradients. Thus
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potential minimizers of JTA need not only to approximate Ĩ but must also have minimal
gradient magnitude. The minimization of JTA is well studied; thus it has been shown
(e.g., [AK06, Chap. 3]) that this optimization problem has a solution. For computing a
minimizer of JTA one usually derives necessary optimality conditions by means of Gâteaux
differentiation of JTA (see Appendix B.2 for details). This yields a weak formulation, i.e.,
a variational problem in some function space, that can be transferred to a strong formu-
lation, i.e., a partial differential equation (PDE), the so-called Euler–Lagrange equation
associated to the optimization problem. The Euler–Lagrange equation that arises from
minimizing JTA is given by

(2.4)

−ν∆I + I =Ĩ , in Ω,

∂

∂n
I =0, on ∂Ω,

where n denotes the outer unit normal vector on ∂Ω. A detailed derivation is given in
Appendix C.1. The Euler–Lagrange equation highlights the most significant drawback
of the functional JTA. The Laplacian appearing in (2.4) has strong isotropic smoothing
properties [AK06, Sec. 3.2.2]. Thus denoising a image Ĩ by minimizing JTA may result in a
blurry solution as illustrated in Figure 2.8. Thus, albeit clean of noise, minimizers of JTA

usually exhibit washed out edges since ‖∇I‖L2(Ω) penalizes all large gradients not only
those corresponding to unwanted isolated jumps. One of the most widely used remedies for
this situation was introduced in 1992 by Rudin, Osher and Fatemi in their famous paper
[ROF92]. They proposed penalizing the L1(Ω)-norm of ∇I instead of the L2(Ω)-norm
resulting in the functional

(2.5) JROF[I] =
1

2ν

∥∥∥Ĩ − I∥∥∥2

L2(Ω)
+

1

2
‖∇I‖L1(Ω) .

Note that if I is sufficiently smooth, ‖∇I‖L1(Ω) is the total variation of I which moti-

vated the use of the term TV-regularization. However, the L1(Ω)-norm in (2.5) leads
to a non-linear Euler–Lagrange equation (compare, e.g., [CL97]). A natural choice for
a space to minimize (2.5) is {I ∈ L2(Ω)|∇I ∈ L1(Ω)}. However, this space does not
lend itself handily for the investigation of minimizers of JROF (compare, e.g., the dis-
cussion in [AK06, Sec. 3.2.3]). Thus, one minimizes JROF in BV (Ω). Unfortunately
the fundamental Lemma of Calculus of Variations cannot be applied directly to BV (Ω).
Thus the Euler–Lagrange equations associated to minimizing JROF on BV (Ω) become
even more complex (for a thorough investigation of the space of functions of bounded
variations and its role in image restoration see, e.g., [CCN11], [CL97] and particularly
the review in [AK06, Sec. 2.2, Sec. 3.2.3]). Moreover, the numerical solution of non-
linear PDEs is in general computationally expensive. Thus there has been strong inter-
est in the development of fast solution schemes for the minimization of JROF. To date
the most widely used strategy is a projection algorithm introduced in 2004 by Cham-
bolle [Cha04]. In the following we will consider Chambolle’s Algorithm in greater de-
tail since it does not only iteratively approximate the minimizer of JROF but as a by-
product it also computes a smooth vector field associated to the edges of Ĩ. The follow-
ing discussion loosely follows the presentation given in [CCN11] for the discrete setting.
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Algorithm 2.1 Chambolle’s projection approach for the TV denoising problem

Input: Ĩ, ν
Output: ITV, p

1: Choose 0 < ∆t < 1
8 and set ITV ← Ĩ as well as p← 0

2: for k = 1, . . . do
3: Compute

p =
p+ ∆t∇

(
ν∇ · p− Ĩ

)
1 + ∆t

∣∣∣∇(ν∇ · p− Ĩ)∣∣∣ .
4: Update

ITV = Ĩ + ν∇ · p

5: end for

Using notation found in, e.g., [GR05, p. 135], we introduce the set

K :=
{
v ∈ L2(Ω) |∃p ∈ H0(div) : |p| ≤ 1 a.e. Ω such that v = ∇ · p

}
,

with
H0(div) :=

{
p ∈ L2(Ω)

∣∣∇ · p ∈ L2(Ω), p · n = 0 on ∂Ω
}
.

Then it can be shown [BL10, Sec. 1.3] by using techniques from convex analysis and
Fenchel duality that the minimizer of JROF on BV (Ω) is given by

ITV = Ĩ − PνK[Ĩ],

where PνK is the L2(Ω)-orthogonal projection of Ĩ onto the set νK. Thus the problem of
minimizing JROF is shifted to computing the projection PνK[Ĩ]. The projection PνK[Ĩ] on
the other hand is given by the solution of the constrained minimization problem

min
p∈H0(div)

∥∥∥ν∇ · p− Ĩ∥∥∥2

L2(Ω)
such that |p| ≤ 1 a.e. Ω.

A standard technique to solve this constrained problem is to study the associated Lagrange
function. It can be shown [Cha04] that there indeed exists a Lagrange multiplier α such
that we obtain the Euler–Lagrange equation

−∇
(
ν∇ · p− Ĩ

)
+ αp = 0,

where α = 0 and |p| < 1 or α = 1 and |p| = 1. Thus α =
∣∣∣∇(ν∇ · p− Ĩ)∣∣∣ satisfies this

requirement which yields

(2.6) −∇
(
ν∇ · p− Ĩ

)
+
∣∣∣∇(ν∇ · p− Ĩ)∣∣∣p = 0.
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(a) (b) (c)

Figure 2.9: TV denoising results obtained by using Chambolle’s projection approach (Algorithm 2.1).
Shown is an artificial image corrupted by 5% additive Gaussian white noise (a) and the
TV denoised image for ν = 0.05 (b) and ν = 0.4 (c). The Algorithm was run to numerical
convergence.

As a solution technique one introduces a pseudo-time t and the term − ∂
∂tp on the right

hand side of (2.6). Using a semi explicit discretization with step size ∆t this yields

∇
(
ν∇ · pk − Ĩ

)
−
∣∣∣∇(ν∇ · pk − Ĩ)∣∣∣pk+1 =

pk+1 − pk

∆t
,

or equivalently

pk+1 =
pk + ∆t∇

(
ν∇ · pk − Ĩ

)
1 + ∆t

∣∣∣∇(ν∇ · pk − Ĩ)∣∣∣ .
Chambolle proved [Cha04] that in the discrete setting the divergence of pk given by this
iteration converges indeed to the projection of Ĩ onto νK as k → ∞ provided that ∆t <
1/8. Thus we summarize Chambolle’s projection approach in Algorithm 2.1. Observe that
in contrast to the minimization of JTA that involved solving the Euler–Lagrange equation
(2.4), Algorithm 2.1 does not require the solution of any linear system and is thus a
purely explicit approach. This makes Chambolle’s projection strategy computationally
very efficient compared to other numerical approaches.
Figure 2.9 illustrates the denoising capabilities of Chambolle’s Algorithm for different val-
ues of ν. Note that in contrast to the results obtained by minimizing JTA depicted in
Figure 2.8 the TV-restored images exhibit sharp edges. Thus the use of ‖∇I‖L1(Ω) in
JROF instead of ‖∇I‖L2(Ω) has indeed an edge-preserving effect. However, with a view
to Figure 2.9 an unwanted phenomenon can be observed as well. In contrast to the
clean uncorrupted image seen in Panel (a) of Figure 2.7 the reconstructions computed
by minimizing JROF show some ”blocky” artifacts in regions where the original image
exhibits smooth intensity variations. This well known effect is often called staircasing
[KS02]. Since the kernel of the TV regularizer comprises constant functions TV denoised
images tend to be piecewise constant (for an extensive review of staircasing effects in im-
age reconstruction see also [KS02]). Thus staircasing is not a peculiarity of Chambolle’s
projection algorithm but an inherent problem of TV regularization in general. A very ele-
gant approach that augments TV regularization by enriching the regularizer’s kernel is the
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(a) (b) (c)

Figure 2.10: Visualization of the dual variable p from Chambolle’s Algorithm 2.1. Shown is |p|1 (a),
|p|2 (b) and |p|∞ (c) for ν = 0.4.

so-called Total Generalized Variation [BKP10]. However, it is not within the scope of this
work to analyze possible remedies for the staircasing phenomenon.
Instead, we are interested in the connection of edges and the dual variable p appearing in
Chambolle’s projection algorithm. Figure 2.10 shows |p|1, |p|2 and |p|∞ for ν = 0.4 (the
respective reconstruction ITV is depicted in Panel (c) of Figure 2.9. Unsurprisingly the
Euclidean norm (Panel (b) of Figure 2.10) yields the poorest results with respect to edge
enhancement due to the averaging of components in every single point. Note, however,
that edges of the original image are indeed amplified in |p|1 and |p|∞. Thus the vector
field p really can provide additional information regarding the image’s edges. Hence |p|1
and |p|∞ may be seen as some kind of edge map of the original image. However, both
|p|1 and |p|∞ are fuzzy which means neither |p|1 nor |p|∞ provide a binary ”yes or no”
information whether a point is on an edge or not. Thus, if a boolean binary edge map is
wanted some postprocessing of p is necessary. This ultimately requires some thresholding
strategy and hence suffers from similar problems as, e.g., Canny’s edge detector discussed
in Section 2.2. Nevertheless, Chambolle edge maps are a rather popular tool in image
processing not least because they emerge for free when employing Algorithm 2.1 in the
context of image reconstruction problems.

2.5 Extracting Contours

A way to circumvent irregular segments that does not depend on preprocessing techniques
was introduced in 1989 by Mumford and Shah in their seminal paper [MS89]. Let Γ denote
a one-dimensional edge set. The Mumford–Shah functional is given by

JMS(I,Γ) =
α

2

ˆ
Ω

∣∣∣I − Ĩ∣∣∣2 dx+
κ

2

ˆ
Ω\Γ
|∇I|2 dx+ νH(Γ),

where H denotes the one-dimensional Hausdorff measure (see, e.g.,[Hal74, p. 53]). Here
some important observations should be made. The first term in JMS guarantees data
fidelity. The second term has to be interpreted with reasonable care since Γ is a set
of Lebesgue measure zero, i.e., |Γ| = 0. In the Mumford–Shah context I is explicitly
assumed to be discontinuous on Γ so that ∇I is singular on Γ and we are thus interested
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(a) (b) (c)

Figure 2.11: Exemplary Ambrosio–Tortorelli segmentation. Shown is the approximation (b) and phase
function (c) for the image (a).

in functions I ∈ H1(Ω\Γ). Hence the second term gives an incentive for I to be smooth off
edges but does not penalize ”jumps” on the edge set Γ. Thus including Γ in the domain of
integration permits the use of the L2(Ω)-norm of ∇I as regularization term on Ω\Γ albeit
avoiding the loss of edges (compare the discussion in the previous section). A motivation
for the third term of JMS can be given by looking again at the bottom panels of Figure 2.7:
the oscillatory edges depicted in Panel (h) are in some sense ”too long” compared to the
desired optimal edges shown in Panel (d) of the same Figure. This motivates including
H(Γ) in JMS in order to penalize long edges.
A rigorous analysis of the Mumford–Shah functional still proves to be very difficult due
to the appearance of the geometric quantity Γ as independent variable. Without fur-
ther assumptions on the regularity of Γ not even existence of minimizers of JMS can be
guaranteed (compare, e.g., [AK06, Sec. 4.2]). Thus deriving optimality conditions for
the Mumford–Shah functional is also only possible under stronger regularity assumptions.
However, even then the discretization of the set of discontinuities Γ remains challenging.
One of the most popular approaches to overcome these difficulties is to approximate JMS

by elliptic functionals defined solely on standard Sobolev spaces, thus eliminating the de-
pendence on the geometric variable Γ. The idea behind this concept may be illustrated by
the following heuristic considerations guided by the presentation given in [She05]. Instead
of explicitly including an edge set in the cost functional, Γ is approximated by ”diffuse
regions” in the image. More specifically, the integral on Ω\Γ and the length H(Γ) appear-
ing in JMS are replaced by local volume integrals of appropriate functions. This can be
achieved by introducing a so-called phase function ψε which might ideally be given by

(2.7) ψε(x) :=

{
dΓ(x)
ε , dΓ(x) ≤ ε,

1, otherwise,

for ε > 0 where dΓ is a distance function given by

dΓ(x) := inf
y∈Γ
|x− y| ,

with |·| denoting the Euclidean norm in R2. Note that ψε is zero on Γ and smoothly
increases to one off the edge set. Thus 1 − ψε is conversely only supported on a band of
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width 2ε around Γ. Hence if Γ is sufficiently smooth we have

ˆ
Ω

1− ψεdx = O(ε)

ˆ
Γ
dS.

Note that for smooth sets the length of the curve Γ given by
´

Γ dS coincides with its one-
dimensional Hausdorff measure. Thus ψε can indeed be seen as a diffuse representation
of the edge set Γ. However, in practice it is of course not possible to give an explicit
a priori characterization of a phase function in the manner of (2.7). Instead, one is
interested in constructing a functional that is minimized by phase functions which have
qualitatively the same properties as the distance function seen in (2.7). Note that the
following considerations crucially rely on the fact that ψε is a scaled distance function of
the form (2.7). We consider the energy associated to ψε [She05, Sec. 2]

(2.8) Lε[ψε] :=

ˆ
Ω
ε |∇ψε|2 +

1

4ε
(1− ψε)2dx.

Let ηε := (1− ψε)2 then Cauchy’s inequality (see Appendix B.1) implies

(2.9) Lε[ψε] ≥
ˆ

Ω
|∇ψε| |1− ψε| dx =

1

2

ˆ
Ω
|∇ηε| dx.

Still assuming sufficient regularity of Γ we may consider it as a smooth curve in Ω. Thus
we may parameterize Γ using tangential and normal coordinates t and n respectively.
In other words we can write ηε in terms of this new coordinate system as ηε(t, n). By
construction ηε remains nearly constant along the tangential direction thus

∣∣ ∂
∂tηε

∣∣ ≈ 0 and

hence |∇ηε| =
√

∂
∂tη

2
ε + ∂

∂nη
2
ε ≈

∣∣ ∂
∂nηε

∣∣. Recall that ηε is one on Γ and smoothly decreases

to zero on a band of width 2ε around Γ. Thus the total variation of ηε the in normal
direction is two (ηε increases from zero to one and back to zero when passing from one
side of Γ to the other). These considerations motivate the estimate

1

2

ˆ
Ω
|∇ηε| dx ≈

ˆ
Γ

ˆ ε

−ε

1

2

∣∣∣∣ ∂∂nηε
∣∣∣∣ dn dS ≈ ˆ

Γ
dS.

This together with (2.9) eventually yields Lε[ψε] ≥
´

Γ dS. It can be shown [AK06, Sec.
4.2.4] that Lε approaches

´
Γ dS as ε→ 0. Thus for ε small enough we conclude that

Lε[ψε] ≈
ˆ

Γ
dS.

To achieve a similar limiting property without relying on an explicit characterization of
ψε an additional term is needed. Adding the term

´
Ω |∇I|

2 ψdx completes the following
approximation of the Mumford–Shah functional

(2.10) JAT[I, ψ] :=
α

2

ˆ
Ω

∣∣∣I − Ĩ∣∣∣2 dx+
κ

2

ˆ
Ω
|∇I|2 ψ dx+ Lε[ψ].

This is the so-called Ambrosio–Tortorelli functional first introduced in 1990 in the famous
paper [AT90]. Note that the second term in JAT induces ψ to be small where |∇I| is
large whereas the second term of Lε as given by (2.9) provides an incentive for ψ to be
close to one. Thus ψ is induced to be small in the proximity of edges and one anywhere
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Figure 2.12: The fuzzy nature of Ambrosio–Tortorelli phase functions for a 1D problem. Shown is
the Ambrosio–Tortorelli approximation (blue) and phase function (red) for Ĩ (black).

else. Hence a phase function minimizing JAT approximates the scaled distance function ψε
given by (2.7). Of course, Ambrosio and Tortorelli did not rely on heuristic considerations
to illustrate approximation properties of JAT. Using De Giorgi’s Γ convergence framework
[DG79] they gave a rigorous proof showing convergence of JAT to the Mumford–Shah
functional JMS as ε → 0. Figure 2.11 shows the Ambrosio–Tortorelli segmentation of an
exemplary image.
Note, however, that the Ambrosio–Tortorelli approach has some shortcomings as well.
Since phase functions minimizing JAT are only smooth approximations to scaled distance
functions of the form (2.7), one observes strong and weak edges. Thus in contrast to
K-means an Ambrosio–Tortorelli segmentation does not result in a binary edge map but
rather in a fuzzy phase function (recall the discussion concerning fuzziness of Chambolle’s
dual variable in the previous Section).
To illustrate this concept consider the one-dimensional example depicted in Figure 2.12.
Here Ĩ (in black) is again the ramp function also seen in Figure 2.6. The red curve shows a
phase function ψ minimizing JAT. Note that in 1D, Γ is a set of discrete points, the points
where Ĩ jumps. Thus in this example Γ is a set of four points Γ = {γ1, . . . , γ4} ordered
from left to right. While the ”edges” of Ĩ in γ2, γ3 and γ4 are distinctly reflected by
considerable drops in the ψ the jump of Ĩ in γ1 is less pronounced. This is a peculiarity of
the discrete setting; due to the fact that the jump-height of Ĩ in γ1 in relation to the jump
magnitudes of Ĩ in the rest of Γ is small, ψ manifests decreases of varying magnitudes.
Expressed in terms introduced above, Ĩ has a weak edge in γ1. This observation may seem
minuscule for the specific example considered as ψ < 1 indicates at least the proximity of
an edge. However, in the presence of noise it may not be trivial anymore to distinguish
between noise and weak edges. Thus in practice one has to rely on heuristic considerations
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2.5 Extracting Contours

(a) (b) (c)

Figure 2.13: An Ambrosio–Tortorelli phase function (b) for the image (a) after thresholding (c).

governing thresholding to convert a phase function ψ to a binary edge map χ. Figure 2.13
illustrates the problems that arise from using these techniques (compare also the discussion
in Section 2.2).
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2 The Image Segmentation Problem
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3
A Novel Approach for Computing Binary Edge Maps

Having reviewed the merits and demerits of some segmentation strategies in the previous
chapter we postulate the following objectives for our new edge detection approach.

1. Computation of a binary edge map χ satisfying

χ =

{
0, on edges,

1, otherwise,

without relying on thresholding techniques.

2. Computation of a smooth approximation of the raw image Ĩ albeit not imposing
piecewise constancy to better account for real data manifesting piecewise smooth
intensity variations.

To achieve these goals we combine the strengths of both K-means clustering (Section 2.3)
and the Ambrosio–Tortorelli approach (Section 2.5). Note that for the sake of an un-
obscured presentation of ideas this chapter is solely devoted to modeling and derivation.
Rigorous proofs covering existence, uniqueness and well posedness of functionals and min-
imizers introduced below are given in Chapter 4.

3.1 A Higher Order Approximation of an Image

We start the derivation of our proposed segmentation approach by focusing on Objec-
tive 2. Thus in the following we develop a functional that is minimized by a higher order
approximation Is of the raw image Ĩ. Therefore assume for now that χ is an estimate
of a binary edge map satisfying Objective 1. Contrary to the Mumford–Shah approach
where |Γ| = 0, here we will define an edge set in such a way as to have positive measure.
Figure 3.1 shows an exemplary χ (in red) for some raw data Ĩ (black) in one dimension.
Consider the functional

F [I, χ] :=
1

2

ˆ
Ω

∣∣∣I − Ĩ∣∣∣2 χ+ βχ
∣∣∇2I

∣∣2 dx,
for some β > 0. By ∇2I we mean the Hessian matrix of I and

∣∣∇2I
∣∣ denotes its Frobenius

norm (details can be found in Appendix A). The first term of F is a data fidelity term.
However, in contrast to the one seen in, e.g., the Mumford–Shah functional JMS, it is
weighted by the edge map χ. Thus data fidelity is only imposed on supp(χ), i.e., only off
edges. The second term introduces a second order penalty that also acts off edges. Thus
I is induced to be linear on connected components of supp(χ) and hence Objective 2 is
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3 A Novel Approach for Computing Binary Edge Maps

Figure 3.1: Constructing a smooth approximation in 1D. Shown is the data Ĩ (black), the estimated
edge map χ (red), the smooth approximation Is (blue) and the fuzzy edge map Ẽ (yellow).

accomplished. Note carefully that weighting the penalty by χ prevents smoothing over
edges.
Recall, however, that χ is only an estimate of a wanted edge map, i.e., χ might be zero
where Ĩ exhibits no edge and vice versa (as shown in Figure 3.1). Thus, instead of solely
considering the functional F we define

(3.1) F [I, χ] := F [I, χ] + δF [I, 1],

or equivalently

F [I, χ] =
1

2

ˆ
Ω

∣∣∣I − Ĩ∣∣∣2 (δ + χ) + β(δ + χ)
∣∣∇2I

∣∣2 dx,
for some 0 < δ � 1. The term δF [I, 1] provides a natural extension of I outside of
supp(χ). However, since δ is chosen particularly small, F allocates a much higher weight
to data fidelity and smoothness on supp(χ). Thus for χ fixed Is defined by

Is := arg min
I
F [I, χ],

is a smooth approximation of Ĩ. Figure 3.1 shows Is (blue) in a one-dimensional situation.
Thus having accomplished Objective 2 we may now focus on Objective 1. Being sufficiently
smooth we may determine the wanted edge map by utilizing Is rather than the possibly
noise corrupted Ĩ. Hence we start by considering the fuzzy edge map

Ẽ := |∇Is| .
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3.2 Segmentation of a Fuzzy Edge Map

Figure 3.2: Approximating the fuzzy edge map. Shown is the fuzzy edge map Ẽ (yellow), the back-
ground image Eb (magenta) and the foreground image Ef (green). The plot is scaled for
better legibility.

Figure 3.1 shows Ẽ in a one-dimensional situation. Note that Ẽ is qualitatively similar to
an Ambrosio–Tortorelli phase function. However, as mentioned above we do not want to
rely on thresholding techniques to extract a binary edge map from Ẽ. Instead we utilize
considerations similar to those that motivated the design of F to compute a segmentation
of Ẽ.

3.2 Segmentation of a Fuzzy Edge Map

With a view to F consider the functional

J [E,χ] :=
1

2

ˆ
Ω

∣∣∣E − Ẽ∣∣∣2 χ+ βχ |∇E|2 dx.

Albeit of the same structure note the differences of this functional compared to F . We
want to compute a segmentation of the previously obtained fuzzy edge map. Thus the
data fidelity term in J involves Ẽ rather than the image Ĩ. Secondly, in contrast to F , a
first order regularity term is used. This follows the idea of a membrane model for Ẽ; the
heuristic concept is to fix membranes from above Ẽ and from below Ẽ and to use these
membranes to define layers according to which Ẽ can be binarized. However, we still have
to account for the fact that the estimate χ may be imperfect with regards to Objective 1.
Hence we define analogously

(3.2) J [E,χ] := J [E,χ] + δJ [E, 1],

or equivalently

J [E,χ] =
1

2

ˆ
Ω

∣∣∣E − Ẽ∣∣∣2 (δ + χ) + β(δ + χ) |∇E|2 dx.

Then for fixed χ, Eb is given by

Eb := arg min
E

J [E,χ],

and is an approximation of Ẽ. Again, weighting by χ yields better approximation quality
of Eb on supp(χ). Recall that the original goal was to compute an edge map satisfying
Objective 1. In order to achieve this we have to design a technique that allows for making
a distinct decision whether a point is in an edge set or not. This decision will be made
by comparing quantities inside and outside estimated edge sets. Hence for fixed χ we
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3 A Novel Approach for Computing Binary Edge Maps

Figure 3.3: An edge map obtained by (3.3). Shown is the raw data Ĩ (black), the background image
Eb (magenta), the foreground image Ef (green) and the edge map χ (red) as given by
(3.3).

introduce
Ef := arg min

E
J [E, 1− χ].

Like Eb, this is also an approximation of Ẽ. In contrast to Eb, however, weighting by
1 − χ induces Ef to estimate Ẽ more accurately off the support of χ. Thus Eb and
Ef are approximations of Ẽ outside and inside the estimated edge set respectively. In
the following we will refer to Eb as the background and to Ef as the foreground image.
Figure 3.2 clarifies this terminology by referring again to a one-dimensional situation.
Shown is the fuzzy edge map Ẽ (yellow), the background image Eb (magenta) and the
foreground image Ef (green). Note that these curves are obtained by using the estimated
edge set and the raw data depicted in Figure 3.1. It can be seen that Eb is below Ef.
Hence when looking from top to the bottom Eb is in the ”background” whereas Ef lies
in the ”foreground”. Thus from this perspective, Eb approximates Ẽ in regions where Ẽ
is smaller whereas Ef is closer, where Ẽ is larger. This observation will be crucial in the
following.

3.3 Binarization of a Fuzzy Edge Map

We will exploit the fact the Eb and Ef are two means of approximating Ẽ. With a view
to Figure 3.2 we see that Ef is indeed closer to Ẽ in the proximity of jumps whereas Eb

approximates Ẽ more accurately further away from jumps. This observation motivates
the following binarization strategy. Points at which Eb is closer to Ẽ are not points of an
edge sets. Conversely, points at which Ef is closer to Ẽ lie in an edge set. Thus we define
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3.4 An Algorithm to Compute Binary Edge Maps

Figure 3.4: Result of Algorithm 3.1 for a one-dimensional problem. Shown is the raw data Ĩ (black),
the smooth image Is (blue) and the binary edge map χ (red).

an edge map by

(3.3) χ(x) :=

{
0, ϑ

∣∣∣Eb(x)− Ẽ(x)
∣∣∣ ≤ ∣∣∣Ef(x)− Ẽ(x)

∣∣∣ ,
1, otherwise,

where the parameter ϑ ≥ 0 governs the thickness of edges. Hence for ϑ = 0 we would
obtain χ = 0 everywhere on Ω, i.e., no edges, whereas larger values of ϑ yield thicker edges.
A numerical investigation illustrating the effect of ϑ is given in Section 6.4. Figure 3.3
shows an edge map obtained by (3.3). Note that the initial estimated edge map used to
compute Is and Ẽ, and thus Eb and Ef, has of course an influence on the form of χ given
by (3.3). Thus to eliminate the possible negative influence of a bad initial edge map we
refine χ iteratively. This idea is the foundation of the algorithmic approach detailed in
the next section.

3.4 An Algorithm to Compute Binary Edge Maps

Note that all considerations presented so far crucially rely on the fact that some estimate
for a binary edge map satisfying Objective 1 is available. Thus, in practice the first
question that arises is how to obtain such an estimate. Extensive numerical tests in one as
well as in two dimensions indicated that edge maps obtained by K-means clustering with
K = 2 are the most robust initial guesses. Thus for χ being a K-means edge map, first
the smooth image Is and then the fuzzy edge map Ẽ are computed. Subsequently, Ẽ is
used to compute the back- and foreground images Eb and Ef respectively. In the next step
χ is updated according to (3.3). The crucial idea now is not to go back to recompute Is
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3 A Novel Approach for Computing Binary Edge Maps

Algorithm 3.1 Computation of binary edge maps

Input: Ĩ, β, δ, ϑ
Output: χ, Is

1: Compute an initial edge map χ using K-means clustering (see Section 2.3) with K = 2

2: while χ changes do
3: Compute Is = arg min

I
F [I, χ]

4: Set Ẽ = |∇Is|
5: while χ changes do
6: Compute Eb = arg min

E
J [E,χ] and Ef = arg min

E
J [E, 1− χ]

7: Set

χ(x) :=

{
0, ϑ

∣∣∣Eb(x)− Ẽ(x)
∣∣∣ ≤ ∣∣∣Ef(x)− Ẽ(x)

∣∣∣ ,
1, otherwise.

8: end while
9: end while

Figure 3.5: Result of Algorithm 3.1 for an artificial image. Shown is the raw image Ĩ, the smooth
approximation Is, the fuzzy edge map Ẽ, the binary edge map χ, the foreground image
Ef and the background image Eb.

26



3.4 An Algorithm to Compute Binary Edge Maps

right away but rather update Eb and Ef using the new edge map χ. This is repeated until
either changes in Ef are sufficiently small or χ does not change any more. We will refer to
this procedure as the Inner Iteration. Only after the Inner Iteration has converged are Is

and hence Ẽ updated. Then using the recomputed fuzzy edge map the Inner Iteration is
started again. We call this the Outer Iteration. Algorithm 3.1 summarizes the procedure.
Note that Algorithm 3.1 just sketches the basic mechanics of the developed approach.
A more detailed pseudo-code addressing stopping criteria and specific discretization and
implementation details is given in Section 5.3.
Figure 3.4 depicts the result of this algorithmic approach for the one-dimensional model
problem used throughout this chapter. Figure 3.5 shows the result of Algorithm 3.1 for a
two-dimensional artificial image.
As stated in the beginning of this chapter, many mathematical details have been omitted
deliberately here to allow the reader to focus on the considerations that govern the design
of Algorithm 3.1. The next chapter subsequently fills those gaps and presents a rigorous
analysis of the presented approach.
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3 A Novel Approach for Computing Binary Edge Maps
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4
Analysis of the Proposed Method

This chapter is devoted to an extensive analysis of the algorithmic strategy introduced
in Chapter 3. Note that for reasons of technical necessity some mathematical details
deviate from the formulation seen in Algorithm 3.1. However, these adaptations have
been introduced with considerable precautions. For the sake of brevity and to establish a
consistent basis for the theoretical analysis below, assume the following.

Assumption 1. Let Ω = (0, 1)2 and Ĩ ∈ L2(Ω). Further, let 0 < δ � 1, β > 0 and ϑ > 0.

Note further that in the earlier discussion we relied on an intuitive notion of an edge map.
In a more rigorous mathematical framework we have to specify what we mean by an edge
map. Thus in the following we will rather consider characteristic functions of ”appropriate”
sets. More specifically we only consider characteristic functions of sets in the metric space
M(Ω) (defined in Appendix B.2). In other words, here, the term characteristic function
implies measurability since M(Ω) solely consists of Lebesgue measurable sets. In the
course of the following sections the reason to start this analysis with the Inner Iteration
will become clear.

4.1 The Inner Iteration

Given Assumption 1 let χ be a characteristic function of some subset of Ω and let
E ∈ H1(Ω). Recall the functional J given by (3.2). We want to deduce the neces-
sary optimality conditions for the minimization of J with respect to E for a fixed χ. To
simplify notation we define

(4.1) Jb[E] := J [E,χ],

and thus consider the minimization problem

(4.2) inf
E∈H1(Ω)

Jb[E].

Note that Jb is everywhere Gâteaux differentiable. Thus we compute the Gâteaux deriva-
tive (see Appendix B.2) of Jb in an arbitrary direction v ∈ C∞(Ω̄)
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4 Analysis of the Proposed Method

δJb

δE
[E; v] =

d

ds

(
1

2

ˆ
Ω

∣∣∣E + sv − Ẽ
∣∣∣2 (δ + χ) + β(δ + χ) |∇(E + sv)|2 dx

)∣∣∣∣
s=0

=

ˆ
Ω

(E + sv − Ẽ)(δ + χ)v + β(δ + χ)∇(E + sv) · ∇v dx
∣∣∣∣
s=0

=

ˆ
Ω

(E − Ẽ)(δ + χ)v + β(δ + χ)∇E · ∇v dx.

Hence the weak formulation of the necessary optimality conditions for (4.2) is given by
(compare, e.g., [Lue69, Sec. 7.4, Th. 1])

(4.3) Bb[u, v] = fb[v], ∀v ∈ H1(Ω),

where Bb : H1(Ω)×H1(Ω)→ R is a bilinear form defined by

(4.4) Bb[u, v] :=

ˆ
Ω
β(δ + χ)∇u · ∇v + (δ + χ)uv dx,

and fb : H1(Ω)→ R is a linear functional

(4.5) fb[v] :=

ˆ
Ω
Ẽ(δ + χ)v dx.

Similarly we set

(4.6) Jf[E] := J [E, 1− χ],

and thus obtain the minimization problem

(4.7) inf
E∈H1(Ω)

Jf[E].

We compute again

δJf

δE
[E; v] =

ˆ
Ω

(E − Ẽ)(δ + 1− χ)v + β(δ + 1− χ)∇E · ∇v dx.

Thus the weak formulation of the necessary optimality conditions for (4.7) is analogously
given by

(4.8) Bf[u, v] = ff[v], ∀v ∈ H1(Ω),

with the bilinear form Bf : H1(Ω)×H1(Ω)→ R defined through

(4.9) Bf[u, v] :=

ˆ
Ω
β(δ + 1− χ)∇u · ∇v + (δ + 1− χ)uv dx,

and the linear functional ff : H1(Ω)→ R

(4.10) ff[v] :=

ˆ
Ω
Ẽ(δ + 1− χ)v dx.

30



4.1 The Inner Iteration

First we show that the minimization problems (4.2) and (4.7) both have unique solutions.

Theorem 1. Given Assumption 1 let Ẽ ∈ L2(Ω) and χ be a characteristic function on
Ω. Then the minimization problems (4.2) and (4.7) respectively have unique solutions.

Proof. We want to apply the Lax–Milgram Lemma (Appendix B.2). Both fb and ff are
bounded since (note that ‖χ‖L∞(Ω) , ‖1− χ‖L∞(Ω) ≤ 1)

|fb[v]| ≤ ‖δ + χ‖L∞(Ω)

ˆ
Ω

∣∣∣Ẽv∣∣∣ dx ≤ (δ + 1)
∥∥∥Ẽ∥∥∥

L2(Ω)
‖v‖H1(Ω) ,

and

|ff[v]| ≤ ‖δ + 1− χ‖L∞(Ω)

ˆ
Ω

∣∣∣Ẽv∣∣∣ dx ≤ (δ + 1)
∥∥∥Ẽ∥∥∥

L2(Ω)
‖v‖H1(Ω) .

Next we show that the bilinear forms Bb and Bf are bounded. Starting with Bb we
compute

|Bb[u, v]| ≤ ‖β(δ + χ)‖L∞(Ω)

ˆ
Ω
|∇u| |∇v| dx+ ‖δ + χ‖L∞(Ω)

ˆ
Ω
|u||v|dx

≤β(δ + ‖χ‖L∞(Ω)) ‖∇u‖L2(Ω) ‖∇u‖L2(Ω) + (δ + ‖χ‖L∞(Ω)) ‖u‖L2(Ω) ‖v‖L2(Ω)

≤(δ + 1)(β + 1) ‖u‖H1(Ω) ‖v‖H1(Ω) ,

where we used the Cauchy–Schwarz inequality (Appendix B.1). Analogously we obtain

|Bf[u, v]| ≤β(δ + ‖1− χ‖L∞(Ω)) ‖u‖H1(Ω) ‖v‖H1(Ω)

+ (δ + ‖1− χ‖L∞(Ω)) ‖u‖H1(Ω) ‖v‖H1(Ω)

=(δ + 1)(β + 1) ‖u‖H1(Ω) ‖v‖H1(Ω) .

Left to show is coercivity of both Bb and Bf. Starting again with Bb we get since χ ≥ 0
and β, δ ≥ 0

Bb[u, u] =

ˆ
Ω
β (δ + χ)∇u · ∇u+ (δ + χ)u2dx

≥δ
ˆ

Ω
β∇u2 + u2dx

≥δmin{β, 1} ‖u‖2H1(Ω) ,

(4.11)

and similarly
Bf[u, u] ≥ δmin{β, 1} ‖u‖2H1(Ω) .

Thus both Bb and Bf are coercive on H1(Ω) and the conditions of the Lax–Milgram
Lemma are satisfied which implies that each weak formulation (4.3) and (4.8) has a unique
solution. This together with the observation that both cost functionals Jb and Jf are
strictly convex in E yields that the minimization problems (4.2) and (4.7) respectively
have unique solutions [ET99, Chap. 2 Proposition 1.2].

We are primarily interested in the effect that changes in the edge map χ have on the back-
and foreground images and vice versa. Thus in the following we will investigate continuity
of these dependencies. Therefore it is crucial to choose a notion of convergence of charac-
teristic functions that is tightly connected to convergence of the associated sets. It turns
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4 Analysis of the Proposed Method

out that the strong L1(Ω)-topology is a natural choice when working with characteristic
functions. Conversely a very convenient way to define convergence of a sequence of sets
{Ωk}k≥1 to some limit set Ωχ is to use the measure of the symmetric difference of sets
|Ωχ M Ωk| (for details see Appendix B.2). The following Lemma shows that these two
modes of convergence are equivalent (a similar result is presented in [CFK04]).

Lemma 1. Given Assumption 1 let {χk}k≥1 be a sequence of characteristic functions on
Ω and Ωk := supp(χk) for all k ∈ N. Similarly let χ be also a characteristic function on
Ω with Ωχ := supp(χ). Then

|Ωχ M Ωk|
k→∞−→ 0 ⇔ ‖χ− χk‖L1(Ω)

k→∞−→ 0.

Proof. Every χk and χ are characteristic which implies

Ωχ\Ωk = {x ∈ Ω |χ(x) = 1 ∧ χk(x) = 0} ,

and analogously
Ωk\Ωχ = {x ∈ Ω |χ(x) = 0 ∧ χk(x) = 1} .

Since Ωχ\Ωk and Ωk\Ωχ are disjoint we obtain

|Ωχ M Ωk| = |(Ωχ\Ωk) ∪ (Ωk\Ωχ)|
= |{x ∈ Ω |χ(x) = 1 ∧ χk(x) = 0}|+ |{x ∈ Ω |χ(x) = 0 ∧ χk(x) = 1}|

=

ˆ
Ω
χ(1− χk) dx+

ˆ
Ω
χk(1− χ) dx

=

ˆ
Ω
χ− 2χχk + χk dx =

ˆ
Ω
χ2 − 2χχk + χ2

k dx =

ˆ
Ω
|χ− χk|2 dx

=

ˆ
Ω
|χ− χk| dx

= ‖χ− χk‖L1(Ω) ,

which proves the claim.

Let

(4.12) Eb := arg min
E∈H1(Ω)

Jb[E] and Ef := arg min
E∈H1(Ω)

Jf[E],

with the functionals given by (4.1) and (4.6) respectively. Note that Theorem 1 guarantees
well posedness of this definition. Now that we have selected and characterized a suitable
notion of convergence for characteristic functions (and the associated sets) we can inves-
tigate the mutual influence of fore- and background images on edge maps and vice versa.
We need the following technical result first.
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4.1 The Inner Iteration

Lemma 2. Given Assumption 1 define

(4.13) ϕδ(x) :=
1

4πδ
e−
|x|2
4δ ,

and for any g ∈ Lp(Ω) with 1 ≤ p <∞ let

gδ := g ∗ ϕδ =

ˆ
R2

ϕδ(x− y)g(y) dy,

where g is extended by 0 outside of Ω. Then the following statements hold.

1. The function gδ is real analytic on Ω and gδ
a.e.−→ g. Moreover, if 0 ≤ g ≤ 1 then

0 ≤ gδ ≤ 1.

2. Let ω ⊂ Ω with |ω| > 0 and assume gδ ≡ γ on ω for some γ ∈ R. Then ϕδ ≡ γ on
Ω.

3. For 1 ≤ p <∞ choose 1 ≤ r ≤ ∞ such that 1/r+1−1/p ∈ [0, 1]. Then the operator

(4.14) Rδ :

{
Lp(Ω) → Lr(Ω),

g 7→ g ∗ ϕδ,

is continuous and injective.

Proof. We prove each claim separately

1. Observe that ϕδ(x−y) is the two-dimensional heat kernel and thus ϕδ as well as gδ
are real analytic functions on R2 and hence also on Ω [Byu98]. Thus G(δ,x) := gδ(x)
solves 

∂

∂δ
G+ ∆G =0, x ∈ R2, δ > 0,

G(0,x) =g(x), x ∈ R2,

and hence limδ→0G(x, δ) = g(x) for almost every x (compare, e.g., [AST12]). Sup-
pose now 0 ≤ g ≤ 1. Then since ϕδ ≥ 0 it follows that gδ ≥ 0 and further

|gδ(x)| =
∣∣∣∣ˆ
R2

ϕδ(y)g(x− y) dy

∣∣∣∣ ≤ 1 ·
ˆ
R2

ϕδ(y) dy = 1,

since ϕδ has integral one on R2.

2. The second claim follows from real analyticity of gδ on Ω (compare [Kra01, Cor.2.38]).

3. Since ϕδ is real analytic on R2 it is in Lq(Ω) for any 1 ≤ q ≤ ∞. Thus for g ∈ Lp(Ω)
fix 1 ≤ r ≤ ∞ such that 1/r + 1 − 1/p = 1/q. Then by Young’s inequality for
convolutions (Appendix B.1) we have

‖Rδ[g]‖Lr(Ω) ≤ ‖g‖Lp(Ω) ‖ϕδ‖Lq(Ω) ,

thus Rδ is well defined and continuous. Since
´
R2 ϕδdx = 1 the operator Rδ is also

injective (see, e.g., [GLV09]).
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4 Analysis of the Proposed Method

We show in the following that sets which are closely related to the edge maps seen in
Algorithm 3.1 (compare Remark 1) are converging provided that the underlying images
converge.

Lemma 3. Given Assumption 1 and Ẽ ∈ H1(Ω) let {Ebk}k≥1 and {Efk}k≥1 be two
sequences strongly converging in H1(Ω) to some E?b and E?f respectively. Further, let

Z ∈ L2(Ω)\H1(Ω) and ϕδ be given by (4.13). Define

Ωk :=

{
x ∈ Ω

∣∣∣∣∣
((√∣∣∣Efk − Ẽ

∣∣∣2 + δ − ϑ
√∣∣∣Ebk − Ẽ

∣∣∣2 + δ + δZ

)
∗ ϕδ

)
(x) ≥ 0

}
,

and

Ωχ :=

{
x ∈ Ω

∣∣∣∣∣
((√∣∣∣E?f − Ẽ∣∣∣2 + δ − ϑ

√∣∣∣E?b − Ẽ∣∣∣2 + δ + δZ

)
∗ ϕδ

)
(x) ≥ 0

}
.

Then |Ωχ M Ωk|
k→∞−→ 0.

Proof. We introduce the following notation

hk :=ϑ

√∣∣∣Ebk − Ẽ
∣∣∣2 + δ, h :=ϑ

√∣∣∣E?b − Ẽ∣∣∣2 + δ,

gk :=

√∣∣∣Efk − Ẽ
∣∣∣2 + δ, g :=

√∣∣∣E?f − Ẽ∣∣∣2 + δ.

Observe that ˆ
Ω
g2 dx =

ˆ
Ω

∣∣∣E?f − Ẽ∣∣∣2 + δ dx =
∥∥∥E?f − Ẽ∥∥∥2

L2(Ω)
+ δ |Ω| <∞,

since Ω is bounded and E?f just as Ẽ are in H1(Ω) ⊂ L2(Ω) by assumption. Thus
g ∈ L2(Ω). Similarly we obtain

‖∇g‖L2(Ω) =

∥∥∥∥∥∥∥∥
(Ef − Ẽ)(∇Ef −∇Ẽ)√∣∣∣Ef − Ẽ

∣∣∣2 + δ

∥∥∥∥∥∥∥∥
L2(Ω)

≤ 1√
δ

∥∥∥(Ef − Ẽ)(∇Ef −∇Ẽ)
∥∥∥
L2(Ω)

<∞,

and thus g ∈ H1(Ω). Analogously one may show that gk, hk and h are also in H1(Ω).
Now we rewrite the definitions of Ωk and Ωχ as follows

Ωk = {x ∈ Ω |((gk − hk + δZ) ∗ ϕδ) (x) ≥ 0} ,
Ωχ = {x ∈ Ω |((g − h+ δZ) ∗ ϕδ) (x) ≥ 0} .

(4.15)

Thus the set Ωχ\Ωk is given by

(Ωχ\Ωk) = {x ∈ Ω |((g − h+ δZ) ∗ ϕδ) (x) ≥ 0 ∧ ((hk − gk − δZ) ∗ ϕδ) (x) > 0} .
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Let ε > 0 and define

Uk(ε) := {x ∈ Ω |((g − h+ hk − gk) ∗ ϕδ) (x) ≥ ε} ,

then by distributivity of the convolution it follows immediately that (Ωχ\Ωk) ⊆ Uk(0).
Introducing the sets

V (ε) := {x ∈ Ω |0 ≤ ((g − h+ δZ) ∗ ϕδ) (x) < ε

∧ ((hk − gk − δZ) ∗ ϕδ) (x) > 0} ,
(4.16)

and

W (ε) := {x ∈ Ω | ((g − h+ δZ) ∗ ϕδ) (x) ≥ ε ∧ ((hk − gk − δZ) ∗ ϕδ) (x) > 0} ,

we can rewrite Ωχ\Ωk so that

(4.17) (Ωχ\Ωk) = (V (ε) ∪W (ε)).

Obviously

(4.18) |W (ε)| ≤ |Uk(ε)| , ∀ε > 0,

and we show in the following that |V (ε)| → 0 as ε → 0. Thus suppose (Ωχ\Ωk) 6= ∅ (if
(Ωχ\Ωk) = ∅ then by (4.17), V (ε) = ∅ for all ε ≥ 0 and the claim is trivial). If {εk}k≥1 is
a monotonically decreasing null sequence then the Definition (4.16) of V (ε) implies that
V (εk+1) ⊂ V (εk) since εk+1 < εk. Hence {V (εk)}k>0 is a decreasing nested sequence of

sets such that V0 :=
⋂∞
k=1 V (εk) and |V (ε)| ε→0−→ |V (0)|. We want to show that |V0| = 0.

Assume for the sake of contradiction that V0 has positive measure and hence

(4.19) (g − h+ δZ) ∗ ϕδ = 0 on V0.

According to Lemma 2 (g−h+δZ)∗ϕδ is real analytic on Ω. Since |V0| > 0 relation (4.19)
implies again by Lemma 2 that

(4.20) (g − h+ δZ) ∗ ϕδ = 0 on Ω.

Let Rδ be the operator defined in (4.14) then (4.20) can be rewritten as

Rδ[g − h+ δZ] = 0 on Ω.

Since Rδ[0] = 0 as well we have

0 = Rδ[g − h+ δZ] = Rδ[0].

Lemma 2 also guarantees that Rδ is injective which thus implies

g − h+ δZ = 0 on Ω,

or equivalently
h− g = δZ on Ω.
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4 Analysis of the Proposed Method

However, this is a contradiction since by assumption Z ∈ L2(Ω)\H1(Ω) but h−g ∈ H1(Ω).

Thus V0 cannot have positive measure and hence |V (ε)| ε→0−→ |V (0)| = 0. This means

(4.21) ∀ε > 0 ∃ε1 > 0 : V (ε̂) <
ε

4
, ∀ε̂ ∈ (0, ε1).

Further, by employing Markov’s inequality (Appendix B.1) and again distributivity of the
convolution we obtain the following estimate

|Uk(ε)| ≤
1

ε

ˆ
Ω
|(g − h+ hk − gk) ∗ ϕδ| dx

≤1

ε

(
‖(g − gk) ∗ ϕδ‖L1(Ω) + ‖(hk − h) ∗ ϕδ‖L1(Ω)

)
, ∀ε > 0.

(4.22)

Note that for some positive real numbers α and αk we have the identity

α− αk = (
√
α+ δ +

√
αk + δ)(

√
α+ δ −

√
αk + δ),

or equivalently

(4.23)
√
α+ δ −

√
αk + δ =

α− αk√
α+ δ +

√
αk + δ

.

Now let α =
∣∣∣E?b − Ẽ∣∣∣2 and αk :=

∣∣∣Ebk − Ẽ
∣∣∣2 then we compute

‖h− hk‖L1(Ω) =

ˆ
Ω
ϑ

∣∣∣∣∣
√∣∣∣E?b − Ẽ∣∣∣2 + δ −

√∣∣∣Ebk − Ẽ
∣∣∣2 + δ

∣∣∣∣∣ dx
=

ˆ
Ω
ϑ

∣∣∣∣∣∣∣∣
∣∣∣E?b − Ẽ∣∣∣2 − ∣∣∣Ebk − Ẽ

∣∣∣2√∣∣∣E?b − Ẽ∣∣∣2 + δ +

√∣∣∣Ebk − Ẽ
∣∣∣2 + δ

∣∣∣∣∣∣∣∣ dx

=

ˆ
Ω
ϑ

∣∣∣∣∣∣∣∣
(Ebk − E?b)(Ebk + E?b − 2Ẽ)√∣∣∣E?b − Ẽ∣∣∣2 + δ +

√∣∣∣Ebk − Ẽ
∣∣∣2 + δ

∣∣∣∣∣∣∣∣ dx

≤ϑ ‖Ebk − E
?
b‖L2(Ω)

∥∥∥∥∥∥∥∥
Ebk + E?b − 2Ẽ√∣∣∣E?b − Ẽ∣∣∣2 + δ +

√∣∣∣Ebk − Ẽ
∣∣∣2 + δ

∥∥∥∥∥∥∥∥
L2(Ω)

.

(4.24)

By assumption Ebk −→
H1(Ω)

E?b and hence Ebk −→
L2(Ω)

E?b. Thus for every ε > 0 we can pick

K ∈ N such that for k ≥ K we have ‖Ebk‖L2(Ω) < ‖E
?
b‖L2(Ω) + ε. Hence we obtain

(4.25)

∥∥∥∥∥∥∥∥
Ebk + E?b − 2Ẽ√∣∣∣E?b − Ẽ∣∣∣2 + δ +

√∣∣∣Ebk − Ẽ
∣∣∣2 + δ

∥∥∥∥∥∥∥∥
L2(Ω)

≤ 1

δ

(
‖E?b‖L2(Ω) +

∥∥∥Ẽ∥∥∥
L2(Ω)

+
ε

2

)
.
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4.1 The Inner Iteration

Thus by combining (4.24) and (4.25) and using Young’s inequality for convolutions (Ap-
pendix B.1) we get

‖(h− hk) ∗ ϕδ‖L1(Ω) ≤‖h− hk‖L1(Ω) ‖ϕδ‖L1(Ω)

≤ϑ
δ

∥∥∥Ebk − Ẽ
∥∥∥
L2(Ω)

×(
‖E?b‖L2(Ω) +

∥∥∥Ẽ∥∥∥
L2(Ω)

+
ε

2

)
‖ϕδ‖L1(Ω)

k→∞−→ 0.

(4.26)

Similar considerations show that also

(4.27) ‖(g − gk) ∗ ϕδ‖L1(Ω)
k→∞−→ 0,

since {Efk}k≥1 converges strongly in H1(Ω) as well. Thus due to (4.22) we get

(4.28) |Uk(ε)|
k→∞−→ 0, ∀ε > 0.

Using ε1 appearing in (4.21) we infer from (4.28) the existence of K1 ∈ N such that

(4.29) |Uk(ε̂)| <
ε

4
, ∀k ≥ K1, ∀ε̂ ∈ (0, ε1).

Thus combining (4.17), (4.18), (4.21) and (4.29) yields

(4.30) |Ωχ\Ωk| = |W (ε̂) ∪ V (ε̂)| ≤ |Uk(ε̂)|+ |V (ε̂)| < ε

2
, ∀k ≥ K1, ∀ε̂ ∈ (0, ε1).

Conversely for

(Ωk\Ωχ) = {x ∈ Ω |((h− g − δZ) ∗ ϕδ) (x) > 0 ∧ ((gk − hk + δZ) ∗ ϕδ) (x) ≥ 0} .

we define
Ūk(ε) := {x ∈ Ω |((h− g + gk − hk) ∗ ϕδ) (x) ≥ ε} ,

for ε > 0. We get similarly (Ωk\Ωχ) ⊆ Ūk(0) and introduce

V̄ (ε) := {x ∈ Ω |0 ≤ ((h− g − δZ) ∗ ϕδ) (x) < ε ∧ ((gk − hk + δZ) ∗ ϕδ) (x) ≥ 0}

and

W̄ (ε) := {x ∈ Ω | ((h− g − δZ) ∗ ϕδ) (x) ≥ ε ∧ ((gk − hk + δZ) ∗ ϕδ) (x) > 0} ,

Obviously we have again

(4.31) (Ωk\Ωχ) = (V̄ (ε) ∪ W̄ (ε)),

and

(4.32)
∣∣W̄ (ε)

∣∣ ≤ ∣∣Ūk(ε)∣∣ , ∀ε > 0.

Following the argumentation given above we conclude similarly that
∣∣V̄ (ε)

∣∣ ε→0−→|V (0)|=0.
If (Ωk\Ωχ) = ∅ then by (4.31), V̄ (ε) = ∅ for all ε ≥ 0. If (Ωk\Ωχ) 6= ∅ then
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4 Analysis of the Proposed Method

∣∣V̄0

∣∣ =
∣∣⋂∞

k=1 V̄ (εk)
∣∣ = 0 since (g − h+ δZ) ∗ ϕδ 6= 0 on Ω as shown above. Thus

(4.33) ∀ε > 0 ∃ε2 > 0 : V̄ (ε̂) <
ε

4
, ∀ε̂ ∈ (0, ε2).

Using again Markov’s inequality together with (4.26) and (4.27) we analogously obtain

(4.34)
∣∣Ūk(ε)∣∣ ≤ 1

ε

(
‖(g − gk) ∗ ϕδ‖L1(Ω) + ‖(hk − h) ∗ ϕδ‖L1(Ω)

)
k→∞−→ 0, ∀ε > 0.

Hence there exists K2 ∈ N such that

(4.35)
∣∣Ūk(ε̂)∣∣ < ε

4
, ∀k ≥ K2,∀ε̂ ∈ (0, ε2),

with ε2 as in (4.33). Thus (4.31), (4.32), (4.33) and (4.35) yield

(4.36) |Ωk\Ωχ| =
∣∣W̄ (ε̂) ∪ V̄ (ε̂)

∣∣ ≤ ∣∣Ūk(ε̂)∣∣+
∣∣V̄ (ε̂)

∣∣ < ε

2
, ∀k ≥ K2,∀ε̂ ∈ (0, ε2).

Hence for ε̂ ∈ (0,min{ε1, ε2}) and k ≥ max{K1,K2} (4.30) and (4.36) finally give

|Ωχ M Ωk| = |(Ωχ\Ωk) ∪ (Ωk\Ωχ)|
= |Ωχ\Ωk|+ |Ωk\Ωχ|
≤ |Uk(ε̂)|+ |V (ε̂)|+

∣∣Ūk(ε̂)∣∣+
∣∣V̄ (ε̂)

∣∣
<ε.

Since ε > 0 was arbitrary this means that |Ωχ M Ωk|
k→∞−→ 0.

Remark 1. First observe that we proved Lemma 3 for arbitrary H1(Ω)-sequences {Ebk}k≥1

and {Efk}k≥1 converging to some limits E?b and E?f . Thus the previous result is quite gen-
eral and does not only hold for back- and foreground images as given by (4.12). Note further
that the perturbation Z ∈ L2(Ω)\H1(Ω) as well as the analytic mollification appearing in
the definitions of Ωk and Ωχ from Lemma 3 are purely technical devices. Similarly requir-
ing Ẽ to be in H1(Ω) instead of L2(Ω) (as assumed in Theorem 1) is only necessary for
the techniques used in the previous proof. For

Ωk =
{
x ∈ Ω

∣∣∣ϑ ∣∣∣Ebk − Ẽ
∣∣∣ ≤ ∣∣∣Efk − Ẽ

∣∣∣} and Ωχ =
{
x ∈ Ω

∣∣∣ϑ ∣∣∣Eb − Ẽ
∣∣∣ ≤ ∣∣∣Ef − Ẽ

∣∣∣}
it cannot be guaranteed that

∣∣∣Eb − Ẽ
∣∣∣ 6= ∣∣∣Ef − Ẽ

∣∣∣ on Ω and hence |V (ε)| ε→09 0. Thus the

definitions of Ωk and Ωχ have been modified in order to obtain |V (ε)| ε→0−→ 0 and thus the

wanted convergence |Ωχ M Ωk|
k→∞−→ 0.

This may look like a substantial deviation from Algorithm 3.1, however, for any α ∈ R
we have

√
|α|2 + δ

δ→0−→ |α|, δZ δ→0−→ 0 and for any g ∈ Lp(Ω) by Lemma 2 g ∗ ϕδ
a.e.−→ g

as δ → 0. Hence to satisfy technical necessities we adapt the definition of χ seen in
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4.1 The Inner Iteration

Algorithm 3.1 in the following way

(4.37) χ(x) :=

1,

((√∣∣∣Ef − Ẽ
∣∣∣2 + δ − ϑ

√∣∣∣Eb − Ẽ
∣∣∣2 + δ + δZ

)
∗ ϕδ

)
(x) ≥ 0,

0, otherwise,

where we emphasize again that this redefinition is only used for theoretical purposes.

Having analyzed the influence of Eb and Ef on the edge map χ given by (4.37) we want to
prove conversely that there is also a continuous dependence of both back- and foreground
images on this edge map. Thus in the following we will use notation that reflects this
influence. Let χ be some characteristic function on Ω and

(4.38) χδ := χ ∗ ϕδ,

with ϕδ from (4.13). Consider

(4.39) E[χδ] := arg min
E∈H1(Ω)

J [E,χδ],

and analogously

(4.40) E[1− χδ] := arg min
E∈H1(Ω)

J [E, 1− χδ].

By Lemma 2 the analytic mollification χδ satisfies 0 ≤ χδ ≤ 1 since 0 ≤ χ ≤ 1 and
thus

∥∥χδ∥∥
L∞(Ω)

,
∥∥1− χδ

∥∥
L∞(Ω)

≤ 1. Hence the proof of Theorem 1 shows that the above

definitions (4.39) and (4.40) are well posed. In analogy to the discussion in Remark 1 we
have to rely on χδ instead of χ to be able to prove continuity of back- and foreground
images depending on χ. However, this technical adaptation is justifiable as well since
Lemma 2 implies χδ

a.e.−→ χ.

Lemma 4. Given Assumption 1 and Ẽ ∈ H1(Ω) let {χk}k≥1 and χ be characteristic
functions satisfying χk −→

L1(Ω)
χ and denote by χδk and χδ their mollifications in terms of

(4.38). Then E[χδk] −→
H1(Ω)

E[χδ] and E[1− χδk] −→
H1(Ω)

E[1− χδ].

Proof. We only prove convergence of the sequence {E[χδk]}k≥1. Convergence of
{E[1 − χδk]}k≥1 can be shown following the argumentation given below and replacing
χδ by 1− χδ.
To avoid notational overhead we introduce the shortcuts Ek := E[χδk] and Eχ := E[χδ]
together with

Bk[u, v] :=

ˆ
Ω
β(δ + χδk)∇u · ∇v + (δ + χδk)uv dx,

and

fk[v] :=

ˆ
Ω

(δ + χδk)Ẽv dx.

Thus Ek is the unique element in H1(Ω) satisfying

(4.41) Bk[Ek, v] = fk[v], ∀v ∈ H1(Ω).
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Similarly, Eχ is the unique solution to (4.3) (with χδ in place of χ). Combining (4.41) and
(4.4) gives

(4.42) Bk[Eχ, v] =

ˆ
Ω

(δ + χδ)Ẽv dx+

ˆ
Ω
β(χδk − χδ)∇Eχ · ∇v + (χδk − χδ)Eχv dx.

Subtracting (4.42) from (4.41) yields further

Bk[Ek − Eχ, v] =

ˆ
Ω
Ẽv(χδk − χδ)− β(χδk − χδ)∇Eχ · ∇v − (χδk − χδ)Eχv dx,

and thus

(4.43) |Bk[Ek − Eχ, v]| ≤
∥∥∥χδk − χδ∥∥∥

L∞(Ω)
‖v‖H1(Ω)

(∥∥∥Ẽ∥∥∥
H1(Ω)

+ ‖Eχ‖H1(Ω) (β + 1)

)
.

Observe further that due to χδk ≥ 0, estimate (4.11) shows that all Bk are uniformly
coercive

Bk[v, v] =

ˆ
Ω
β(δ + χδk) |∇v|

2 + (δ + χδk)v
2dx

≥δmin{β, 1} ‖v‖2H1(Ω) , ∀v ∈ H1(Ω).

(4.44)

With p = 1, r = ∞ and q = ∞ we conclude by continuity of Rδ from Lemma 2 that

‖χk − χ‖L1(Ω)
k→∞−→ 0 implies

∥∥χδk − χδ∥∥L∞(Ω)

k→∞−→ 0. Hence write v = Ek − Eχ and

combine (4.43) and (4.44) to obtain

‖Ek − Eχ‖H1(Ω) ≤
1

δmin{β, 1}

∥∥∥χδk − χδ∥∥∥
L∞(Ω)

(∥∥∥Ẽ∥∥∥
H1(Ω)

+ ‖Eχ‖H1(Ω) (β + 1)

)
k→∞−→ 0,

thus {Ek}k≥1 converges strongly to Eχ in H1(Ω).

Combining Lemmas 3 and 4 we can now prove continuity of a map that will be crucial in
the following. The mapping T defined below is a functional representation of an adaptation
of the steps seen in the Inner Iteration of Algorithm 3.1. Since the set of characteristic
functions on Ω do not lend themselves to form a vector space of beneficial mathematical
properties we rely on the metric spaceM(Ω) (discussed in Appendix B.2) to define T . Thus
we do not study characteristic functions but rather investigate changes of the associated
sets. However, Lemma 1 guarantees that ”distance” between two sets in the sense of
the metric on M(Ω) is closely related to the L1(Ω)-norm difference of the corresponding
characteristic functions.

Corollary 2. Given Assumption 1 and Ẽ ∈ H1(Ω) let M(Ω) be the metric space defined
in Appendix B.2. Further, let Z ∈ L2(Ω)\H1(Ω) and ϕδ be given by (4.13). For ω ∈M(Ω)
let χω denote its characteristic function and χδω the mollification in terms of (4.38). Then
the mapping T :M(Ω)→M(Ω) defined by

T [ω] :=

{
x ∈ Ω

∣∣∣∣∣
((√∣∣∣E[1− χδω]− Ẽ

∣∣∣2 + δ − ϑ
√∣∣∣E[χδω]− Ẽ

∣∣∣2 + δ + δZ

)
∗ ϕδ

)
(x) ≥ 0

}
,

is continuous.
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Proof. Let {ωk}k≥1 ⊂ M(Ω) be a convergent sequence with limit ω, i.e., |ω M ωk|
k→∞−→ 0,

and let {χk}k≥1 and χ respectively be the associated characteristic functions. Then
Lemma 1 implies that χk −→

L1(Ω)
χ. Let E[χδk] and E[1 − χδk] denote the images related

to χδk in the sense of (4.39) and (4.40) respectively. Then by Lemma 4 we infer that

E[χδk] −→
H1(Ω)

E[χδ] and E[1− χδk] −→
H1(Ω)

E[1− χδ].

which according to Lemma 3 yields further |T [ω] M T [ωk]|
k→∞−→ 0 and thus

T :M(Ω)→M(Ω) is continuous.

Corollary 2 finally allows us to prove the key result of this section. We want to show that
an adapted version of the Inner Iteration of Algorithm 3.1 has a fixed point. We will rely
on the classical fixed point theorem by Schauder (see Appendix B.2) for the proof. Thus
we have to consider a space that lends itself to some notion of compactness. Hence we
extend the mapping T in a way that allows us to consider smoothed edge maps in L2(Ω).
The map H below establishes a connection between L2(Ω) andM(Ω) via thresholding (at
1/2) and smoothing. For reasons similar to those discussed in Remark 1, a non-smooth
function Z is involved as well. The image of some ξ ∈ L2(Ω) under H is a set and is thus
in the domain of T . Hence the introduced functional representation of the Inner Iteration
can be applied. Finally a mapping M that assigns a set to its characteristic function
together with the operator Rδ that makes for additional smoothing maps back into L2(Ω).
These modifications allow the use of Schauder’s Fixed Point Theorem for the composite
map Φ below. Note carefully, however, that these extensions are mere technical devices
that are not used in practice. The whole purpose of the function Φ is to show that an
adaptation of the Inner Iteration seen in Algorithm 3.1 has a fixed point.

Theorem 2. Given Assumption 1 and Ẽ ∈ H1(Ω) let ϕδ be given by (4.13) and
Z ∈ L2(Ω)\H1(Ω). For ξ ∈ L2(Ω) define

(4.45) ξδ := ξ ∗ ϕδ,

and let H : L2(Ω)→M(Ω) be given by

(4.46) H[ξ] :=

{
x ∈ Ω

∣∣∣∣((ξδ − 1

2
+ δZ

)
∗ ϕδ

)
(x) ≥ 0

}
.

Let T be the function defined in Corollary 2 and Rδ the operator from (4.14). Further,
let M :M(Ω) → L2(Ω) be the mapping that assigns each ω ∈ M(Ω) to its characteristic
function χω, i.e., M [ω] = χω.
Then the function

(4.47) Φ :

{
L2(Ω) → L2(Ω),

ξ 7→ (Rδ ◦M ◦ T ◦ H)[ξ],

has a fixed point in the set

(4.48) K :=
{
ξ ∈ L2(Ω) |0 ≤ ξ ≤ 1 a.e. Ω

}
.
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Proof. We will use Schauder’s Fixed Point Theorem (see Appendix B.2) to prove the claim.
Thus we show first that the set K is convex in some Banach space X. Choosing X = L2(Ω)
straightforward calculations show convexity of K: for λ ∈ (0, 1) let ψ := λξ + (1− λ)ξ̄ be
a convex combination of ξ, ξ̄ ∈ K. Then obviously ψ ∈ L2(Ω) and since λ ∈ (0, 1) implies
1− λ > 0 and ξ, ξ̄ ∈ K yields ξ ≥ 0 we see that ψ ≥ 0 a.e. Ω. Similarly

ψ = λξ + (1− λ)ξ̄ ≤ λ+ 1− λ = 1, a.e. Ω,

since ξ, ξ̄ ∈ K. Thus ψ ∈ K and therefore K is convex.
Next we show continuity of Φ. Since

Φ = Rδ ◦M ◦ T ◦ H : L2(Ω)→M(Ω)→M(Ω)→ L2(Ω),

we start by proving that H is continuous. Hence let {ξk}k≥1 ⊂ L2(Ω) such that ξk −→
L2(Ω)

ξ

and denote by ξδk and ξδ respectively real analytic mollifications in the sense of (4.45).
Further, let Ωk := H[ξk] and Ωχ := H[ξ] and let {χk}k≥1 and χ respectively denote the

corresponding characteristic functions. We want to show that |Ωχ M Ωk|
k→∞−→ 0. We

compute

Ωχ\Ωk = {x ∈ Ω |χ(x) = 1 ∧ χk(x) = 0}

=

{
x ∈ Ω

∣∣∣∣((ξδ − 1

2
+ δZ

)
∗ ϕδ

)
(x) ≥ 0∧((

1

2
− ξδk − δZ

)
∗ ϕδ

)
(x) > 0

}(4.49)

For ε > 0 we introduce the set

Uk(ε) :=
{
x ∈ Ω|

(
(ξδ − ξδk) ∗ ϕδ

)
(x) ≥ ε

}
.

By distributivity of the convolution it follows immediately that (Ωχ\Ωk) ⊂ Uk(0). Using
a similar argumentation as in the proof of Lemma 3 we start by defining

V (ε) :=

{
x ∈ Ω

∣∣∣∣0 ≤ ((ξδ − 1

2
+ δZ

)
∗ ϕδ

)
(x) < ε ∧

((
1

2
− ξδk − δZ

)
∗ ϕδ

)
(x) > 0

}
,

and

W (ε) :=

{
x ∈ Ω

∣∣∣∣((ξδ − 1

2
+ δZ

)
∗ ϕδ

)
(x) ≥ ε ∧

((
1

2
− ξδk − δZ

)
∗ ϕδ

)
(x) > 0

}
,

so that we may rewrite (4.49) in the following manner

(4.50) (Ωχ\Ωk) = (V (ε) ∪W (ε)).

Obviously

(4.51) |W (ε)| ≤ |Uk(ε)| , ∀ε > 0,

and we will show that |V (ε)| → 0 as ε → 0. If (Ωχ\Ωk) = ∅ then by (4.50), V (ε) = ∅ for
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4.1 The Inner Iteration

all ε ≥ 0 which makes the claim trivial. Thus suppose (Ωχ\Ωk) 6= ∅ and let {εk}k≥1 denote
a monotonically decreasing null sequence. Then again the definition of V (ε) implies that
{V (εk)}k≥1 is a decreasing nested sequence of sets such that V0 := ∩∞k=1V (εk). Assume
|V0| > 0 then

(4.52) (ξδ − 1

2
+ δZ) ∗ ϕδ = 0 on V0.

Mimicking the argumentation given in the proof of Lemma 3 we conclude by Lemma 2
that (ξδ − 1

2 + δZ) ∗ ϕδ is a real analytic expression on Ω thus (4.52) has to hold on the
whole image domain Ω. Stating this in terms of the operator Rδ from (4.14) and exploiting
the fact that Rδ[0] = 0 we obtain analogously

0 = Rδ[ξ
δ − 1

2
+ δZ] = Rδ[0],

and thus by injectivity of Rδ (compare Lemma 2)

ξδ − 1

2
+ δZ = 0 on Ω,

or equivalently

δZ =
1

2
− ξδ on Ω.

This is a contradiction since ξδ is real analytic (by Lemma 2) but Z is by assumption in

L2(Ω)\H1(Ω). Thus V0 cannot have positive measure and |V (ε)| ε→0−→ 0. Hence

(4.53) ∀ε > 0 ∃ε1 > 0 : V (ε̂) <
ε

4
, ∀ε̂ ∈ (0, ε1).

Using (4.45) together with Chebyshev’s inequality and Young’s inequality for convolutions
(both in Appendix B.1) we obtain

|Uk(ε)| ≤
1

ε2

ˆ
Ω

∣∣∣(ξδ − ξδk) ∗ ϕδ∣∣∣2 dx
=

1

ε2

∥∥∥(ξδ − ξδk) ∗ ϕδ
∥∥∥2

L2(Ω)

≤ 1

ε2

∥∥∥ξδ − ξδk∥∥∥2

L2(Ω)
‖ϕδ‖2L1(Ω)

=
1

ε2
‖(ξ − ξk) ∗ ϕδ‖2L2(Ω) ‖ϕδ‖

2
L1(Ω)

≤ 1

ε2
‖ξ − ξk‖2L2(Ω) ‖ϕδ‖

4
L1(Ω)

k→∞−→ 0, ∀ε > 0.

Thus we infer that for ε1 > 0 appearing in (4.53) there exists an index K1 ∈ N such that

(4.54) |Uk(ε̂)| <
ε

4
, ∀k ≥ K1, ∀ε̂ ∈ (0, ε1).
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4 Analysis of the Proposed Method

Conversely for

Ωk\Ωχ =

{
x ∈ Ω

∣∣∣∣((1

2
− ξδ − δZ

)
∗ ϕδ

)
(x) > 0 ∧

((
ξδk −

1

2
+ δZ

)
∗ ϕδ

)
(x) ≥ 0

}
,

we define
Ūk(ε) :=

{
x ∈ Ω

∣∣∣((ξδk − ξδ) ∗ ϕδ
)

(x) ≥ ε
}
,

and we get similarly (Ωk\Ωχ) ⊂ Ūk(0). We have again

(4.55) (Ωk\Ωχ) = (V̄ (ε) ∪ W̄ (ε)),

for

V̄ (ε) :=

{
x ∈ Ω

∣∣∣∣0 ≤ ((1

2
− ξδ − δZ

)
∗ ϕδ

)
(x) < ε ∧

((
ξδk −

1

2
+ δZ

)
∗ ϕδ

)
(x) ≥ 0

}
,

and

W̄ (ε) :=

{
x ∈ Ω

∣∣∣∣((1

2
− ξδ − δZ

)
∗ ϕδ

)
(x) ≥ ε ∧

((
ξδk −

1

2
+ δZ

)
∗ ϕδ

)
(x) ≥ 0

}
,

such that

(4.56)
∣∣W̄ (ε)

∣∣ ≤ ∣∣Ūk(ε)∣∣ , ∀ε > 0.

Following the argumentation given above we conclude similarly that
∣∣V̄ (ε)

∣∣ ε→0−→ 0: if
(Ωk\Ωχ) = ∅ then V̄ (ε) = ∅ for any ε ≥ 0. If (Ωk\Ωχ) 6= ∅ then

∣∣V̄0

∣∣ =
∣∣⋂∞

k=1 V̄ (εk)
∣∣ = 0

since (ξδ − 1
2 + δZ) ∗ ϕδ 6= 0 on Ω as shown above. Thus

(4.57) ∀ε > 0 ∃ε2 > 0 : V̄ (ε̂) <
ε

4
, ∀ε̂ ∈ (0, ε2).

Using again (4.45) together with Chebyshev’s inequality and Young’s inequality for con-
volutions we similarly obtain∣∣Ūk(ε)∣∣ ≤ 1

ε2
‖ξ − ξk‖2L2(Ω) ‖ϕδ‖

4
L1(Ω)

k→∞−→ 0, ∀ε > 0,

and hence deduce the existence of K2 ∈ N such that

(4.58)
∣∣Ūk(ε̂)∣∣ < ε

4
, ∀k ≥ K2,∀ε̂ ∈ (0, ε2),

with ε2 > 0 as in (4.57). Thus for ε̂ ∈ (0,min{ε1, ε2}) and k ≥ max{K1,K2} we combine
(4.50), (4.51) and (4.53)–(4.58) to obtain

|H[ξ] M H[ξk]| = |Ωχ M Ωk|
= |(Ωχ\Ωk) ∪ (Ωk\Ωχ)|
= |Ωχ\Ωk|+ |Ωk\Ωχ|
≤ |Uk(ε̂)|+ |V (ε̂)|+

∣∣Ūk(ε̂)∣∣+
∣∣V̄ (ε̂)

∣∣
<ε.

(4.59)
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Since ε > 0 was arbitrary this means that |H[ξ] M H[ξk]|
k→∞−→ 0 and hence H is contin-

uous. According to Corollary 2, T : M(Ω) → M(Ω) is continuous as well. With p = 2,
r = 2 and q = 1 Lemma 2 implies that Rδ is also continuous. Continuity of the map
M :M(Ω)→ L2(Ω) is shown as follows. Hence let {ωk}k≥1 ⊂M(Ω) and ω ∈M(Ω) such

that |ωk M ω| k→∞−→ 0. Then by Lemma 1 the associated characteristic functions {χk}k≥1

and χω respectively satisfy χk −→
L1(Ω)

χω and hence

‖χk − χω‖2L2(Ω) =

ˆ
Ω
|χk − χω|2 dx =

ˆ
Ω
|χk − χω| dx = ‖χk − χω‖L1(Ω)

k→∞−→ 0,

thus M is continuous. Hence Φ = Rδ ◦M ◦ T ◦ H : L2(Ω)→ L2(Ω) is continuous.
Left to show is that Φ(K) ⊆ K and Φ(K) is compact in K. Therefore, note that Lemma 2
implies 0 ≤ Rδ[χω] ≤ 1 for any characteristic function χω and further
Rδ[χω] = χω ∗ ϕδ ∈ H1(Ω) ⊂ L2(Ω). Thus Rδ[χω] ∈ K and indeed Φ(K) ⊆ K. Now
choose ξ̄ ∈ K arbitrary and let H[ξ̄] = ω̄. Let further T [ω̄] = ω, denote its characteristic
function by χω, i.e., M [ω] = χω, and set χδω = Rδ[χω] = ϕδ ∗ χω. Hence χδω = Φ[ξ̄]. Note
that (compare [Eva08, App. C.4, Th. 6])∣∣∣∇χδω(x)

∣∣∣ =

∣∣∣∣ˆ
Ω
∇ϕδ(x− y)χω(y) dy

∣∣∣∣
≤‖χω‖L∞(Ω)

ˆ
Ω
|∇ϕδ(x− y)| dy

≤‖1‖L2(Ω) ‖∇ϕδ‖L2(Ω)

=
√
|Ω| ‖∇ϕδ‖L2(Ω) ,

and thus ∥∥∥∇χδω∥∥∥2

L2(Ω)
=

ˆ
Ω

∣∣∣∣ˆ
Ω
∇ϕδ(x− y)χω(y) dy

∣∣∣∣2 dx
≤
ˆ

Ω
|Ω| ‖∇ϕδ‖2L2(Ω) dx

= |Ω|2 ‖∇ϕδ‖2L2(Ω) .

Since χδω ∈ H1(Ω) we compute further (using again Young’s inequality for convolutions)∥∥Φ[ξ̄]
∥∥2

H1(Ω)
=
∥∥∥χδω∥∥∥2

H1(Ω)
=
∥∥∥χδω∥∥∥2

L2(Ω)
+
∥∥∥∇χδω∥∥∥2

L2(Ω)

≤‖χω ∗ ϕδ‖2L2(Ω) + |Ω|2 ‖∇ϕδ‖2L2(Ω)

≤‖χω‖2L1(Ω) ‖ϕδ‖
2
L2(Ω) + |Ω|2 ‖∇ϕδ‖2L2(Ω)

≤‖1‖2L1(Ω) ‖ϕδ‖
2
L2(Ω) + |Ω|2 ‖∇ϕδ‖2L2(Ω)

= |Ω|2
(
‖ϕδ‖2L2(Ω) + ‖∇ϕδ‖2L2(Ω)

)
=: c(δ).

(4.60)

Thus any sequence {Φ[ξk]}k≥1 ⊂ K ⊂ H1(Ω) is bounded in the H1(Ω)-norm in terms
of fixed c(δ). Since Ω is bounded H1(Ω) is compactly embedded in L2(Ω) [Ada75,
Chap. 6, Th. 6.53] so {Φ[ξk]}k≥1 has a convergent subsequence. Thus Φ(K) is compact in
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4 Analysis of the Proposed Method

K and we finally conclude by Schauder’s Fixed Point Theorem that Φ has a fixed point
in K.

In the next section we show a result similar to Theorem 1 addressing existence and unique-
ness of the smooth image Is as seen in the Outer Iteration of Algorithm 3.1. Furthermore,
in analogy to the map T from Corollary 2 we introduce a continuous representation of the
Outer Iteration.

4.2 The Outer Iteration

Given Assumption 1 let χ be a characteristic function and I ∈ H2(Ω). Recall the func-
tional F given by (3.1). We want to deduce the necessary optimality conditions for the
minimization of F with respect to I for a fixed χ. To simplify notation we define

(4.61) Fs[I] := F [I, χ],

and consider the minimization problem

(4.62) inf
I∈H2(Ω)

Fs[I].

We compute the Gâteaux derivative (see Appendix B.2) of Fs in an arbitrary direction
v ∈ C∞(Ω̄)

δFs

δI
[I; v] =

d

dt

(
1

2

ˆ
Ω

∣∣∣I + tv − Ĩ
∣∣∣2 (δ + χ) + β(δ + χ)

∣∣∇2(I + tv)
∣∣2 dx)∣∣∣∣

t=0

=

ˆ
Ω

(I + tv − Ĩ)(δ + χ)v + β(δ + χ)∇2(I + tv) : ∇2v dx

∣∣∣∣
t=0

=

ˆ
Ω

(I − Ĩ)(δ + χ)v + β(δ + χ)∇2I : ∇2v dx,

where ”:” denotes a component-wise matrix scalar product (sometimes called Frobenius

inner product, see Appendix A) such that
∣∣∇2v

∣∣2 = ∇2v : ∇2v. Thus the weak formulation
of the necessary optimality conditions for (4.62) is given by

(4.63) As[u, v] = ds[v], ∀v ∈ H2(Ω),

where As : H2(Ω)×H2(Ω)→ R is a bilinear form defined by

(4.64) As[u, v] :=

ˆ
Ω
β(δ + χ)∇2u : ∇2v + (δ + χ)uv dx,

and ds : H2(Ω)→ R is a linear functional

(4.65) ds[v] :=

ˆ
Ω
Ĩ(δ + χ)v dx.

We start by showing that the minimization problem (4.62) has a unique solution.
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4.2 The Outer Iteration

Theorem 3. Given Assumption 1 let χ be a characteristic function on Ω. Then the
minimization problem (4.62) has a unique solution.

Proof. We want to apply the Lax–Milgram Lemma (Appendix B.2). Thus by employing
‖χ‖L∞(Ω) ≤ 1 we see that ds is bounded

|ds[v]| ≤ ‖δ + χ‖L∞(Ω)

ˆ
Ω

∣∣∣Ĩv∣∣∣ dx ≤ (δ + 1)
∥∥∥Ĩ∥∥∥

L2(Ω)
‖v‖H2(Ω) .

Next we show that the bilinear form As is bounded as well

|As[u, v]| ≤ ‖β(δ + χ)‖L∞(Ω)

ˆ
Ω

∣∣∇2u
∣∣ ∣∣∇2v

∣∣ dx+ ‖δ + χ‖L∞(Ω)

ˆ
Ω
|u||v|dx

≤β(δ + ‖χ‖L∞(Ω))
∥∥∇2u

∥∥
L2(Ω)

∥∥∇2u
∥∥
L2(Ω)

+ (δ + ‖χ‖L∞(Ω)) ‖u‖L2(Ω) ‖v‖L2(Ω)

≤(δ + 1)(β + 1) ‖u‖H2(Ω) ‖v‖H2(Ω) ,

where we used the Cauchy–Schwarz inequality (Appendix B.1). Left to show is coercivity
of As. We compute

As[u, u] =

ˆ
Ω
β (δ + χ)∇2u : ∇2u+ (δ + χ)u2dx

≥δ
ˆ

Ω
β
∣∣∇2u

∣∣2 + u2dx

≥δmin{β, 1}
(∥∥∇2u

∥∥2

L2(Ω)
+ ‖u‖2L2(Ω)

)
.

(4.66)

By Corollary 4.16 in [Ada75] the right hand side of (4.66) is equivalent to ‖·‖H2(Ω) so
coercivity follows. Thus the Lax–Milgram Lemma implies well posedness of (4.63). This
together with the fact that the cost functional Fs is strictly convex in I ensures that the
minimization problem (4.62) has a unique solution [ET99, Chap. 2, Proposition 1.2].

Thus Theorem 3 guarantees well posedness of the following definition

(4.67) Is := arg min
I∈H2(Ω)

Fs[I],

with Fs as given by (4.61). Similar to the analysis done for the Inner Iteration in the
previous section we will now investigate the influence of the underlying edge maps on the
quantities computed in the Outer Iteration. Thus let χ be some characteristic function on
Ω and χδ its analytic mollification in the sense of (4.38). In analogy to (4.39) we introduce
the notation

(4.68) I[χδ] := arg min
I∈H2(Ω)

F [I, χδ].

Since by Lemma 2, 0 ≤ χδ ≤ 1 holds, the proof of Theorem 3 shows that (4.68) is well
defined. As was the case for Lemma 4 we have to rely here again on χδ instead of χ to be
able to show continuity of the smooth image with respect to χ. But again Lemma 2 yields
χδ

a.e.−→ χ which implies that the deviation of (4.68) to the smooth image used in practice
is negligible for δ vanishingly small.
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Lemma 5. Given Assumption 1 let {χk}k≥1 and χ be characteristic functions satisfying
χk −→

L1(Ω)
χ. Then I[χδk] −→

H2(Ω)
I[χδ] with χδk and χδ denoting the analytic mollifications of

χk and χ respectively in the sense of (4.38).

Proof. For the sake of brevity let Ik := I[χδk] and Iχ := I[χδ]. Then by Theorem 3, Ik
uniquely satisfies

Ak[Ik, v] = dk[v], ∀v ∈ H2(Ω),

with

(4.69) Ak[u, v] :=

ˆ
Ω
β(δ + χδk)∇2u : ∇2v + (δ + χδk)uv dx,

and

dk[v] :=

ˆ
Ω

(δ + χδk)Ĩv dx.

Similarly Theorem 3 implies that Iχ is the unique solution to (4.63) with χδ in place of χ.
Combining (4.63) and (4.69) yields

(4.70) Ak[Iχ, v] =

ˆ
Ω

(δ + χδ)Ĩv dx+

ˆ
Ω
β(χδk − χδ)∇2Iχ : ∇2v + (χδk − χδ)Iχv dx.

Subtracting (4.70) from (4.69) gives

Ak[Ik − Iχ, v] =

ˆ
Ω
Ĩv(χδk − χδ)− β(χδk − χδ)∇2Iχ : ∇2v dx

−
ˆ

Ω
(χδk − χδ)Iχv dx,

(4.71)

and thus

(4.72) |Ak[Ik − Iχ, v]| ≤
∥∥∥χδk − χδ∥∥∥

L∞(Ω)
‖v‖H2(Ω)

(∥∥∥Ĩ∥∥∥
L2(Ω)

+ ‖Iχ‖H2(Ω) (β + 1)

)
.

According to the proof of Theorem 3, Ak is coercive and thus (see Appendix B.2 for
details)

(4.73) ck := inf
v∈H2(Ω)

|Ak[v, v]|
‖v‖2H2(Ω)

> 0, ∀k ∈ N.

By coercivity of As we obtain similarly that its coercivity constant cs satisfies cs > 0.
With p = 1, r = ∞ and q = ∞ we conclude by continuity of Rδ from Lemma 2 that

‖χk − χ‖L1(Ω)
k→∞−→ 0 implies

(4.74)
∥∥∥χδk − χδ∥∥∥

L∞(Ω)

k→∞−→ 0.
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4.2 The Outer Iteration

Hence we have for all v ∈ H2(Ω)

|Ak[v, v]−A[v, v]| =
∣∣∣∣ˆ

Ω
β(χδk − χδ)

∣∣∇2v
∣∣2 + (χδk − χδ)v2dx

∣∣∣∣
≤
∥∥∥χδk − χδ∥∥∥

L∞(Ω)
‖v‖2H2(Ω) (β + 1)

k→∞−→ 0,

and thus by adding and subtracting A[v, v] in (4.73) we conclude that ck
k→∞−→ cs. Since

cs > 0 there exists η > 0 such that ck > η > 0 for all k large enough. Hence for these k
we get

(4.75) |Ak[v, v]| ≥ ck ‖v‖2H2(Ω) > η ‖v‖2H2(Ω) , ∀v ∈ H2(Ω).

Setting v = Ik − Iχ we combine (4.72), (4.74) and (4.75) to get

‖Ik − Iχ‖H2(Ω) ≤
1

η

∥∥∥χδk − χδ∥∥∥
L∞(Ω)

(∥∥∥Ĩ∥∥∥
L2(Ω)

+ (β + 1) ‖Iχ‖H2(Ω)

)
k→∞−→ 0,

thus Ik −→
H2(Ω)

Iχ.

We now want to show that there is also a continuous dependence of the fuzzy edge map on
the smooth image I[χδ] as given by (4.68). However, we make an important observation
first. In Algorithm 3.1 the fuzzy edge map Ẽ links the Outer to the Inner Iteration: the
smooth image Is determines Ẽ which is then segmented in the Inner Iteration. Observe
further that we have made no specific assumptions on Ẽ in the previous section except
it being in H1(Ω). (Theorem 1 was proven for Ẽ ∈ L2(Ω) to clarify that well posedness
of Eb and Ef only requires standard regularity of the right hand side.) Thus in order to
exploit the results obtained for the Inner Iteration we have to ensure that Ẽ ∈ H1(Ω).
However, Note that Ẽ as used in Algorithm 3.1 only has a weak derivative where |∇Is| > 0,
which cannot be guaranteed on the whole image domain Ω. Moreover, we want to utilize
continuity of I[χδ] with respect to χ. Hence we introduce the following modification of Ẽ

(4.76) Ẽ :=
∣∣∣∇Iδs + δ

∣∣∣ ,
where Iδs := I[χδ]. Since Iδs ∈ H2(Ω) we get

ˆ
Ω
Ẽ2dx =

ˆ
Ω

∣∣∣∇Iδs + δ
∣∣∣2 dx <∞,

and

∇Ẽ =
∇2Iδs∇Iδs
|∇Iδs + δ|

∈ L2(Ω),

thus indeed Ẽ ∈ H1(Ω). By Assumption 1, δ is small; thus, the deviation of (4.76) to
the fuzzy edge map used in practice is negligible. Moreover, note that Ẽ ∈ H1(Ω) was
only necessary to rule out the possibility that |V0| = 0 in the proof of Lemma 3 (compare
Remark 1). Thus (4.76) just like the redefinition (4.37) of χ is only a technical device to
satisfy theoretical requirements. Now we prove the following general result.
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Lemma 6. Given Assumption 1 the mapping

(4.77) I :

{
H2(Ω) → H1(Ω),

I 7→ |∇I + δ| ,

is continuous.

Proof. Observe first that I is well defined since for I ∈ H2(Ω) the image I[I] is indeed
in H1(Ω) as detailed above. Let {Ik}k≥1 be a sequence in H2(Ω) strongly converging to
I ∈ H2(Ω) and define Ẽk := |∇Ik + δ| and similarly Ẽ := |∇I + δ|. Then by the reverse
triangle inequality we obtain∥∥∥Ẽk − Ẽ∥∥∥

H1(Ω)
= ‖|∇Ik + δ| − |∇I + δ|‖H1(Ω)

≤‖∇Ik −∇I‖H1(Ω)

≤‖Ik − I‖H2(Ω)
k→∞−→ 0,

thus I is continuous.

Observe carefully that, similar to the situation in Section 4.1, we are now considering
an adapted version of the Outer Iteration from Algorithm 3.1. As explained above the
changes introduced in the computations of Ẽ and I[χδ] are negligible for vanishingly small
δ. However, these slight modifications allow us to prove crucial results in the following.
Note further that we can write this modified Outer Iteration as a composite function
evaluation in the following form. For a given characteristic function χ let

(4.78) Ẽ = I [I[Rδ[χ]]] ,

where Rδ given by (4.14), I[·] is defined in (4.68) and I is given in (4.77). In the following
section we establish the connection of (4.78) to the adapted Inner Iteration discussed in
Section 4.1.

4.3 Rewriting the Algorithm

We will now investigate the dependence of the adapted Inner Iteration from Section 4.1
on the fuzzy edge map Ẽ given by the modified Outer Iteration (4.78). Therefore it is
necessary to clarify the several dependencies on Ẽ that appear in the Inner Iteration.
Observe first that Ẽ appears in the linear functional that determines the right hand sides
fb and ff of (4.3) and (4.8) respectively. Thus Eb and Ef do not only depend on χ but also
on Ẽ. Note further that in the introduced functional representation of the Inner Iteration
given by the mapping T from Corollary 2 we did not consider any dependence on Ẽ. We
only proved continuity of T for a fixed Ẽ. However, in general view of Algorithm 3.1, sets
given by T depend implicitly on the fuzzy edge map Ẽ. To reflect this double dependence
we introduce notation similar to (4.39). Let E[χδ, Ẽ] denote the background image for a
given mollified edge map χδ as defined in (4.38) and a certain fuzzy edge map Ẽ as given
by (4.76). Similarly we denote a foreground image for given χδ and Ẽ by E[1 − χδ, Ẽ].
Using this notation we can prove the following extension of Corollary 2.
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Corollary 3. Given Assumption 1 let ϕδ be defined by (4.13), Z ∈ L2(Ω)\H1(Ω) and
Ẽ ∈ H1(Ω). For ω ∈M(Ω) let χω denote its characteristic function and χδω = Rδ[χω].
Then the mapping T :M(Ω)×H1(Ω)→M(Ω) defined by

T [ω, Ẽ] :=

{
x ∈ Ω

∣∣∣∣∣
((√∣∣∣E[1− χδω, Ẽ]− Ẽ

∣∣∣2 + δ

−ϑ
√∣∣∣E[χδω, Ẽ]− Ẽ

∣∣∣2 + δ + δZ

)
∗ ϕδ

)
(x) ≥ 0

}
,

is continuous.

Proof. Let {Ẽk}k≥1 ⊂ H1(Ω) be a sequence strongly converging to Ẽ ∈ H1(Ω) and
let {ωk}k≥1 be a sequence in M(Ω) converging to ω. Let further χk and χω denote
the characteristic functions associated to ωk and ω respectively. Thus by Lemma 1 we
conclude χk −→

L1(Ω)
χω. For the sake of brevity let Ebk := E[χδk, Ẽk], Eb := E[χδω, Ẽ],

Efk := E[1 − χδk, Ẽk] and Ef := E[1 − χδω, Ẽ]. We prove that Ebk −→
H1(Ω)

Eb. Analogous

to the proof of Lemma 4, convergence of {Efk}k≥1 follows similarly by replacing χδω with
1− χδω.
Theorem 1 implies that Ebk is the unique solution to the weak problem

(4.79) Bk[u, v] = fk[v], ∀v ∈ H1(Ω),

with

Bk[u, v] :=

ˆ
Ω

(δ + χδk)∇u · ∇v + (δ + χδk)uv dx,

and

fk[v] :=

ˆ
Ω

(δ + χδk)Ẽkv dx.

Similarly Eb uniquely satisfies (4.3) (with χδω in place of χ). Combining (4.79) and (4.3)
hence gives

Bk[Ebk − Eb, v] =

ˆ
Ω
δv(Ẽk − Ẽ) + v(Ẽkχ

δ
k − Ẽχδω) dx

−
ˆ

Ω
β(χδk − χδω)∇Eb · ∇v + (χδk − χδω)Ebv dx

=

ˆ
Ω
δv(Ẽk − Ẽ) + vẼk(χ

δ
k − χδω) + vχδω(Ẽk − Ẽ) dx

−
ˆ

Ω
β(χδk − χδω)∇Eb · ∇v + (χδk − χδω)Ebv dx,

and thus

|Bk[Ebk − Eb, v]| ≤‖v‖H1(Ω)

(∥∥∥Ẽk − Ẽ∥∥∥
H1(Ω)

(
δ +

∥∥∥χδω∥∥∥
L∞(Ω)

)
+
∥∥∥Ẽk∥∥∥

H1(Ω)

∥∥∥χδk − χδω∥∥∥
L∞(Ω)

+ (β + 1) ‖Eb‖H1(Ω)

∥∥∥χδk − χδω∥∥∥
L∞(Ω)

)
.
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By assumption Ẽk −→
H1(Ω)

Ẽ. Thus for every ε > 0 we can pick K ∈ N such that for k ≥ K

we have
∥∥∥Ẽk∥∥∥

H1(Ω)
<
∥∥∥Ẽ∥∥∥

H1(Ω)
+ ε. Hence we obtain

|Bk[Ebk − Eb, v]| ≤‖v‖H1(Ω)

[∥∥∥Ẽk − Ẽ∥∥∥
H1(Ω)

(
δ +

∥∥∥χδω∥∥∥
L∞(Ω)

)
+

(∥∥∥Ẽ∥∥∥
H1(Ω)

+ ε

)∥∥∥χδk − χδω∥∥∥
L∞(Ω)

+(β + 1) ‖Eb‖H1(Ω)

∥∥∥χδk − χδω∥∥∥
L∞(Ω)

]
.

(4.80)

Let τ

[∥∥∥Ẽk − Ẽ∥∥∥
H1(Ω)

,
∥∥χδk − χδ∥∥L∞(Ω)

]
denote the bracketed expression on the right

hand side of (4.80). With p = 1, r = ∞ and q = ∞ we conclude by continuity of Rδ

from Lemma 2 that ‖χk − χω‖L1(Ω)
k→∞−→ 0 implies

∥∥χδk − χδω∥∥L∞(Ω)

k→∞−→ 0. Thus

(4.81) τ

[∥∥∥Ẽk − Ẽ∥∥∥
H1(Ω)

,
∥∥∥χδk − χδω∥∥∥

L∞(Ω)

]
k→∞−→ 0.

Observe further that due to χδk ≥ 0, estimate (4.44) shows that all Bk are uniformly
coercive with coercivity constant C := δmin{1, β}. Thus by setting v = Ebk − Eb in
(4.80) and using (4.81) we get

‖Ebk − Eb‖H1(Ω) ≤
1

C
τ

[∥∥∥Ẽk − Ẽ∥∥∥
H1(Ω)

,
∥∥∥χδk − χδω∥∥∥

L∞(Ω)

]
k→∞−→ 0,

thus Ebk −→
H1(Ω)

Eb. It follows analogously that Efk −→
H1(Ω)

Ef. Now define

hk :=ϑ

√∣∣∣Ebk − Ẽk
∣∣∣2 + δ, h :=ϑ

√∣∣∣Eb − Ẽ
∣∣∣2 + δ,

gk :=

√∣∣∣Efk − Ẽk
∣∣∣2 + δ, g :=

√∣∣∣Ef − Ẽ
∣∣∣2 + δ.

Mimicking the argumentation given in the beginning of the proof of Lemma 3 we see
that hk, h, gk and g are H1(Ω)-functions. Furthermore, by using the identity (4.23) with
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α =
∣∣∣Eb − Ẽ

∣∣∣2 and αk =
∣∣∣Ebk − Ẽk

∣∣∣2 we compute

‖h− hk‖L1(Ω) ≤
ˆ

Ω
ϑ

∣∣∣∣∣
√∣∣∣Eb − Ẽ

∣∣∣2 + δ −
√∣∣∣Ebk − Ẽk

∣∣∣2 + δ

∣∣∣∣∣ dx
=

ˆ
Ω
ϑ

∣∣∣∣∣∣∣∣
∣∣∣Eb − Ẽ

∣∣∣2 − ∣∣∣Ebk − Ẽk
∣∣∣2√∣∣∣Eb − Ẽ

∣∣∣2 + δ +

√∣∣∣Ebk − Ẽk
∣∣∣2 + δ

∣∣∣∣∣∣∣∣ dx

=

ˆ
Ω
ϑ

∣∣∣∣∣∣∣∣
(Eb − Ebk)(Ebk + Eb − 2Ẽk) + (Ẽ − Ẽk)(Ẽ + Ẽk − 2Eb)√∣∣∣Eb − Ẽ

∣∣∣2 + δ +

√∣∣∣Ebk − Ẽk
∣∣∣2 + δ

∣∣∣∣∣∣∣∣ dx(4.82)

≤ϑ ‖Eb − Ebk‖L2(Ω)

∥∥∥∥∥∥∥∥
Ebk + Eb − 2Ẽk√∣∣∣Eb − Ẽ
∣∣∣2 + δ +

√∣∣∣Ebk − Ẽk
∣∣∣2 + δ

∥∥∥∥∥∥∥∥
L2(Ω)

+

ϑ
∥∥∥Ẽ − Ẽk∥∥∥

L2(Ω)

∥∥∥∥∥∥∥∥
Ẽ + Ẽk − 2Eb√∣∣∣Eb − Ẽ
∣∣∣2 + δ +

√∣∣∣Ebk − Ẽk
∣∣∣2 + δ

∥∥∥∥∥∥∥∥
L2(Ω)

.

Since Ẽk −→
H1(Ω)

Ẽ by assumption and Ebk −→
H1(Ω)

Eb as shown before we can pick K ∈

N such that for every ε > 0 and k ≥ K we have ‖Ebk‖L2(Ω) < ‖Eb‖L2(Ω) + ε and∥∥∥Ẽk∥∥∥
L2(Ω)

<
∥∥∥Ẽ∥∥∥

L2(Ω)
+ ε. Hence we obtain

(4.83)

∥∥∥∥∥∥∥∥
Ebk

+ Eb − 2Ẽk√∣∣∣Eb − Ẽ
∣∣∣2 + δ +

√∣∣∣Ebk
− Ẽk

∣∣∣2 + δ

∥∥∥∥∥∥∥∥
L2(Ω)

≤ 1√
δ

(
‖Eb‖L2(Ω) +

∥∥∥Ẽ∥∥∥
L2(Ω)

+
3ε

2

)
,

and

(4.84)

∥∥∥∥∥∥∥∥
Ẽ + Ẽk − 2Eb√∣∣∣Eb − Ẽ
∣∣∣2 + δ +

√∣∣∣Ebk
− Ẽk

∣∣∣2 + δ

∥∥∥∥∥∥∥∥
L2(Ω)

≤ 1√
δ

(
‖Eb‖L2(Ω) +

∥∥∥Ẽ∥∥∥
L2(Ω)

+
ε

2

)
.

Thus by combining (4.82) with (4.83) and (4.84) and using Young’s inequality for convo-
lutions (Appendix B.1) we get

‖(h− hk) ∗ ϕδ‖L1(Ω) ≤‖h− hk‖L1(Ω) ‖ϕδ‖L2(Ω)

≤ ϑ√
δ
‖Eb − Ebk‖L2(Ω)

(
‖Eb‖L2(Ω) +

∥∥∥Ẽ∥∥∥
L2(Ω)

+
3ε

2

)
+

ϑ√
δ

∥∥∥Ẽ − Ẽk∥∥∥
L2(Ω)

(
‖Eb‖L2(Ω) +

∥∥∥Ẽ∥∥∥
L2(Ω)

+
ε

2

)
,
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hence ‖(h− hk) ∗ ϕδ‖L1(Ω)
k→∞−→ 0. Similar considerations show that

‖(g − gk) ∗ ϕδ‖L1(Ω)
k→∞−→ 0 as well since Efk −→

H1(Ω)
Ef. Now the claim is a consequence of

the proof of Lemma 3.

Before we prove the first key result of this section we introduce the following notation.
Recall that Φ, the mapping from Theorem 2, was used to extend the functional represen-
tation T of the Inner Iteration. Also Φ was shown to be continuous only with respect to
some ξ (which was implicitly assumed to be a mollified edge map). Just like we extended
T to bring in a dependence on Ẽ by introducing the map T in Corollary 3 above we now
adapt Φ to make the dependence on Ẽ explicit. Thus let

(4.85) Ψ :

{
L2(Ω)×H1(Ω) → L2(Ω),

(ξ, Ẽ) 7→ (M ◦ T )
[
H[ξ], Ẽ

]
,

where M and H are the mappings defined in Theorem 2. Note that since M maps sets
onto their characteristic functions, Ψ[ξ, Ẽ] is a characteristic function on Ω. For N ∈ N
let

(4.86) ΨN [ξ, Ẽ] := Ψ
[
ΨN−1[ξ, Ẽ], Ẽ

]
,

where Ψ0 := id. Note that (4.86) is the functional representation of the N -th step of the
Inner Iteration as given by (4.85). Now we can combine the Inner Iteration (4.85) and the
Outer Iteration (4.78) in the following manner. Let χ be a characteristic function on Ω.
Then define

(4.87) Ξ :

{
L2(Ω) → L2(Ω),

χ 7→ Ψ
[
χ, I[I[χδ]]

]
,

and analogously for N ∈ N let

(4.88) ΞN [χ] := ΨN

[
χ, I[I[χδ]]

]
.

Thus the image of some initial edge map χ under ΞN is a characteristic function repre-
senting the N -fold evaluation of the Inner Iteration (4.85) using the fuzzy edge map (4.76)
depending on χ. Now we can show the following.

Theorem 4. Given Assumption 1 let χ be some characteristic function on Ω. Then the
result of the inner iteration (4.85) after a finite number of steps depends continuously on
the initial guess for χ, i.e., ΞN as given by (4.88) is continuous for every N ∈ N.

Proof. Let {χk}k≥1 be a sequence of characteristic functions converging L2(Ω)-strong to
χ and let χδk and χδ denote the respective analytic mollifications in the sense of (4.38).
Since

(4.89) ‖χk − χ‖L1(Ω) =

ˆ
Ω
|χk − χ| dx =

ˆ
Ω
|χk − χ|2 dx = ‖χk − χ‖2L2(Ω)

k→∞−→ 0,

we have χk −→
L1(Ω)

χ and thus by Lemma 5, I[χδk] −→
H2(Ω)

I[χδ]. For the sake of brevity let

Ik := [χδk] and Iχ := I[χδ]. According to Lemma 6 the mapping I is continuous thus
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Algorithm 4.1 Adaptation of Algorithm 3.1

Input: Ĩ ∈ L2(Ω), a characteristic function χ, n,N ∈ N, β, ϑ > 0 and 0 < δ � 1
Output: χ

1: for i = 1, . . . , n do
2: Evaluate Ẽ = I [I[Rδ[χ]]]
3: Set χ = ΞN [χ] for N ∈ N
4: end for

I[Ik] −→
H1(Ω)

I[Iχ]. Hence with Ẽk := I[Ik] and Ẽ := I[Iχ] we have Ẽk −→
H1(Ω)

Ẽ. Since by

assumption χk −→
L2(Ω)

χ we conclude by continuity of H (compare the proof of Theorem 2)

that |ω M ωk|
k→∞−→ 0 with ω := H[χ] and ωk := H[χk]. Thus Corollary 3 ensures that∣∣∣T [ω, Ẽ] M T [ωk, Ẽk]

∣∣∣ k→∞−→ 0 since T is continuous. Again by the proof of Theorem 2 it

follows that M is continuous and hence Ψ is continuous as well. Since compositions of
continuous maps are also continuous we conclude inductively that ΦN is continuous. Thus
by the argumentation given above, ΞN is continuous for all N ∈ N.

With the tools introduced in this section, particularly (4.78) and (4.88) we can formulate
a theoretical version of Algorithm 3.1. As discussed above the function evaluations (4.78)
and (4.88) approximate Outer and Inner Iteration as seen in Algorithm 3.1. Thus Algo-
rithm 4.1 can be seen as an approximation to Algorithm 3.1 for vanishingly small values of
δ. Finally we state a stability result for Algorithm 4.1 that is an immediate consequence
of Theorem 4.

Corollary 4. The result of Algorithm 4.1 depends continuously on the initial binary edge
map χ.

Proof. Let {χk}k≥1 be a sequence of characteristic functions converging L2(Ω)-strong to
χ. By Theorem 4, ΞN is continuous; thus, ΞN [χk] −→

L2(Ω)
ΞN [χ]. Since compositions

of continuous maps are continuous we conclude that ΞN [ΞN [χk]] −→
L2(Ω)

ΞN [ΞN [χ]] and

inductively ΞnN [χk] −→
L2(Ω)

ΞnN [χ] where we used the notation Ξn := Ξ ◦ Ξn−1 with Ξ0 :=id.

This ends the analysis of an infinite dimensional formulation of Algorithm 3.1. The next
chapter addresses the practical implementation of Algorithm 3.1 using finite elements.
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5
Numerical Approximation

This chapter is devoted to the development of a consistent discretization of Algorithm 3.1.
We will rely on the method of finite elements to achieve this objective. As detailed in
Section 2.1 we only consider digital grayscale images. For the sake of simplicity we restrict
ourselves further to quadratic images of resolution N ×N .
We start by defining spline approximation spaces in 1D and use tensor products to con-
struct the respective spaces in two dimensions. Thus consider the interval Ω1D := (0, 1)
and let Ω1D

i := (xi−1, xi) be a grid on Ω1D with nodes xi = ih and stepsize h = 1/N for
i = 0, . . . , N . We introduce the spline bases

S
(m)
h (Ω1D) :=

{
s ∈ Pm([xi−1, xi]) | s ∈ Cm−1(Ω1D), i = 1, . . . N

}
, m = 0, 1, . . . ,

where Pm([xi−1, xi]) denotes the space of polynomials of degree m on the interval [xi−1, xi].
For m = 0 we mean cellwise constant functions. Let πm denote the canonical spline of
order m, that is

(5.1) πm(x) = (πm−1 ∗ π0)(x), m = 1, 2, . . . ,

with π0 being the characteristic function of the interval [0, 1]; see Figure 5.1 and compare,
e.g., [DH02, Sec. 7.4.1]. We use

ŝ
(m)
i+m+1(x) := π

(
x− xi
h

)
, i = −m, . . . , N − 1,

as basis functions for S
(m)
h (Ω1D). For Ω = (0, 1)2 we interpret S

(m)
h (Ω) as tensor products

of these spline bases. For an exhaustive review of the construction of approximation spaces
in various dimensions see [GR05, Chap. 4].

Remark 2. Let m ∈ N0 and identify H0(Ω) with L2(Ω). Then the spaces S
(m)
h (Ω) are

dense in Hm(Ω) [Sch81]. Further, {s(m)
i }

(N+m)2

i=1 is a basis of S
(m)
h (Ω).

Having introduced spaces and notation we may now start our considerations by looking
at the raw image Ĩ. Since we work with digital grayscale images of size N × N we only
have access to N2 pixelwise averaged intensity values. Thus let Ĩh denote the spline repre-
sentation of Ĩ. In the just introduced terminology the pixelwise averaged approximation

Ĩh is thus a member of S
(0)
h (Ω). Hence let {Ĩh,i}N

2

i=1 denote the intensity values of Ĩh in
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Figure 5.1: The canonical B-splines. Shown is the piecewise constant (m = 0, black), linear (m = 1,
blue), quadratic (m = 2, green) and cubic (m = 3, red) B-spline as given by (5.1).

lexicographic ordering. Then

(5.2) Ĩh =
N2∑
i=1

Ĩh,is
(0)
i .

Similarly, let χh ∈ S
(0)
h (Ω) given by

(5.3) χh =
N2∑
i=1

χh,is
(0)
i .

be the spline representation of some characteristic function χ. We make the following
assumption governing the approximation quality of these discretizations.

Assumption 5. The pixelwise data approximation Ĩh as well as the representation χh of
some edge map χ satisfy∥∥∥Ĩh − Ĩ∥∥∥

L∞(Ω)

h→0−→ 0, ‖χh − χ‖L∞(Ω)
h→0−→ 0.

Recall that Algorithm 3.1 involves the solution of various minimization problems. Thus in
practice we are interested in (approximately) solving the optimality conditions (4.3), (4.8)
and (4.63). Hence in the following we show well posedness and convergence of respective
finite element formulations.
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5.1 Analysis of a Finite Element Approach for the Outer
Iteration

We start by considering the Outer Iteration and in particular the weak formulation of
the necessary optimality condition associated to the minimization problem (4.62). Note

that Is ∈ H2(Ω) and thus following Remark 2 we choose S
(2)
h (Ω) as approximation space.

Hence a finite element discretization of (4.63) is to compute Is,h ∈ S
(2)
h (Ω) so that

(5.4) Ah[Is,h, vh] = dh[vh], ∀vh ∈ S
(2)
h (Ω),

where Ah : H2(Ω)×H2(Ω)→ R is defined by

(5.5) Ah[u, v] :=

ˆ
Ω
β(δ + χh)∇2u : ∇2v + (δ + χh)uv dx,

and dh : H2(Ω)→ R is given by

(5.6) dh[v] :=

ˆ
Ω

(δ + χh)Ĩhv dx.

We show that Is,h is indeed the unique solution to (5.4).

Theorem 5. Given Assumptions 1 and 5 there exists a unique Is,h ∈ S
(2)
h (Ω) satisfying

(5.4).

Proof. The claim is an immediate consequence of the proof of Theorem 3. As ‖χh‖L∞(Ω)≤ 1
we see that dh is bounded

dh[v] ≤ (δ + 1)
∥∥∥Ĩh∥∥∥

L∞(Ω)
‖v‖H2(Ω)

√
|Ω|.

Similarly Ah is bounded as well

|Ah[u, v]| ≤ (δ + 1)(β + 1) ‖u‖H2(Ω) ‖v‖H2(Ω) .

Since χh ≥ 0 we can establish estimate (4.66) for Ah as well. Then following the argu-
mentation in the proof of Theorem 3, Ah is also coercive on H2(Ω) for every h > 0. Since

by Remark 2, S
(2)
h (Ω) ⊂ H2(Ω), the Lax–Milgram Lemma (Appendix B.2) shows unique

solvability of (5.4) which proves the claim.

Having shown well posedness of the problem defining Is,h we can now prove convergence
of the discretization.

Theorem 6. Given Assumptions 1 and 5 let Is,h be the unique solution to (5.4) and let
Is be uniquely defined by the weak formulation (4.63). Then Is,h −→

H2(Ω)
Is as h→ 0.

Proof. Observe that for any v ∈ H2(Ω) we have

Ah[Is,h − Is, v] =

ˆ
Ω
δv(Ĩh − Ĩ) + vĨh(χh − χ) + vχ(Ĩh − Ĩ) dx

−
ˆ

Ω
β(χh − χ)∇2Is : ∇2v + (χh − χ)Isv dx,
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and thus

|Ah[Is,h − Is, v]| ≤ ‖v‖H2(Ω)

(∥∥∥Ĩh − Ĩ∥∥∥
L∞(Ω)

√
|Ω|
(
δ + ‖χ‖L∞(Ω)

)
+
∥∥∥Ĩh∥∥∥

L∞(Ω)
‖χh − χ‖L∞(Ω)

√
|Ω|

+(β + 1) ‖Is‖H2(Ω) ‖χh − χ‖L∞(Ω)

)
.

By Assumption 5, Ĩh −→
L∞(Ω)

Ĩ, and hence for every ε > 0 we may pick K ∈ N such that for

k ≥ K we have
∥∥∥Ĩh∥∥∥

L∞(Ω)
<
∥∥∥Ĩ∥∥∥

L∞(Ω)
+ ε. Thus we obtain

|Ah[Is,h − Is, v]| ≤ ‖v‖H2(Ω)

[∥∥∥Ĩh − Ĩ∥∥∥
L∞(Ω)

√
|Ω|
(
δ + ‖χ‖L∞(Ω)

)
+

(∥∥∥Ĩ∥∥∥
L∞(Ω)

+ ε

)
‖χh − χ‖L∞(Ω)

√
|Ω|

+(β + 1) ‖Is‖H2(Ω) ‖χh − χ‖L∞(Ω)

]
.

(5.7)

Let τ

[∥∥∥Ĩh − Ĩ∥∥∥
L∞(Ω)

, ‖χh − χ‖L∞(Ω)

]
denote the bracketed expression on the right hand

side of (5.7). According to Assumption 5, Ĩh −→
L∞(Ω)

Ĩ and χh −→
L∞(Ω)

χ, thus,

(5.8) τ

[∥∥∥Ĩh − Ĩ∥∥∥
L∞(Ω)

, ‖χh − χ‖L∞(Ω)

]
h→0−→ 0.

Let further cs > 0 denote again the coercivity constant of As. According to the proof of
Theorem 5, Ah is also coercive on H2(Ω) for every h > 0. Hence let similarly ch denote
the coercivity constant of Ah. Then

(5.9) ch = inf
v∈H2(Ω)

|Ah[v, v]|
‖v‖2H2(Ω)

> 0, ∀h > 0.

Since

|Ah[v, v]−As[v, v]| =
∣∣∣∣ˆ

Ω
(χh − χ)

∣∣∇2v
∣∣2 + (χh − χ)v2dx

∣∣∣∣
≤‖χh − χ‖L∞(Ω) ‖v‖

2
H2(Ω)

h→0−→ 0,

by adding and subtracting A[v, v] in (5.9) we conclude that ch
h→0−→ cs. Thus we can choose

η > 0 such that ch > η > 0 for all h small enough. Then for v = Is− Is,h and h sufficiently
small we obtain

‖Is − Is,h‖2H2(Ω) ≤
1

η
Ah[Is − Is,h, Is − Is,h].
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This together with (5.7) and (5.8) finally yields

‖Is − Is,h‖H2(Ω) ≤
1

η
Ah[Is − Is,h, Is − Is,h] ≤ 1

η
τ

[∥∥∥Ĩh − Ĩ∥∥∥
L∞(Ω)

, ‖χh − χ‖L∞(Ω)

]
h→0−→ 0,

which proves the claim.

In the next section we prove analogous results for the Inner Iteration.

5.2 Analysis of a Finite Element Approach for the Inner Iteration

Before we focus on a finite element formulation of the weak problems associated to the
Inner Iteration we have to properly set up the link between the discrete Outer and the
discrete Inner Iteration. In other words, we have to set up a discretization of the fuzzy
edge map Ẽ. Thus following Algorithm 3.1 let Is,h be the unique solution to (5.4) (whose
existence is guaranteed by Theorem 5) and define

(5.10) Ẽh := |∇Is,h| .

Observe that for solving (4.3) and (4.8) we only required Ẽ ∈ L2(Ω) (compare Theorem 1).
Hence we define Ẽh as above instead of following (4.76). The minimization problems (4.2)
and (4.7) and thus their associated optimality conditions (4.3) and (4.8) respectively are

posed on H1(Ω). Thus by Remark 2 we choose S
(1)
h (Ω) as approximation space. Then a

finite element discretization of (4.3) is to compute Eb,h ∈ S
(1)
h (Ω) so that

(5.11) Bb,h[Eb,h, vh] = fb,h[vh], ∀vh ∈ S
(1)
h (Ω),

where the bilinear form Bb,h : H1(Ω)×H1(Ω)→ R is defined by

(5.12) Bb,h[u, v] :=

ˆ
Ω
β(δ + χh)∇u · ∇v + (δ + χh)uv dx,

and the linear functional fb,h : H1(Ω)→ R is given by

fb,h[v] :=

ˆ
Ω

(δ + χh)Ẽhv dx.

Similarly (4.8) is discretized by computing Ef,h ∈ H1(Ω) such that

(5.13) Bf,h[Ef,h, vh] = ff,h[vh], ∀vh ∈ S
(1)
h (Ω),

with Bf,h : H1(Ω)×H1(Ω)→ R given by

(5.14) Bf,h[u, v] :=

ˆ
Ω
β(δ + 1− χh)∇u · ∇v + (δ + 1− χh)uv dx,

and ff,h : H1(Ω)→ R defined by

ff,h[v] :=

ˆ
Ω

(δ + 1− χh)Ẽhv dx.
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The following result shows that Eb,h and Ef,h are the unique solutions to (5.11) and (5.13)
respectively.

Theorem 7. Given Assumptions 1 and 5, Eb,h and Ef,h are uniquely determined by (5.11)
and (5.13) respectively.

Proof. Since both ‖χh‖L∞(Ω) , ‖1− χh‖L∞(Ω) ≤ 1 and χh, 1 − χh ≥ 0 we only show exis-
tence and uniqueness of Eb,h. Unique solvability of (5.13) follows from replacing χh by
1− χh in the arguments given below.
The claim follows immediately from Theorem 1. Boundedness of fb,h is readily established

fb,h[v] ≤ (δ + 1)
∥∥∥Ẽh∥∥∥

L2(Ω)
‖v‖H1(Ω) ,

similarly we see that Bb,h is also bounded

|Bb,h[u, v]| ≤ (δ + 1)(β + 1) ‖u‖H1(Ω) ‖v‖H1(Ω) .

Estimate (4.11) shows that Bb,h is also coercive for every h > 0. By Remark 2

S
(1)
h (Ω) ⊂ H1(Ω); thus, we conclude by the Lax–Milgram Lemma that Eb,h is uniquely

defined by (5.11).

Before we can show convergence of the discretizations Eb,h and Ef,h we have to assure
that the discrete fuzzy edge maps (5.10) converges.

Corollary 6. Given Assumption 1 consider Ẽ used in Algorithm 3.1 and Ẽh given by
(5.10). Then Ẽh −→

L2(Ω)
Ẽ.

Proof. We compute ∥∥∥Ẽ − Ẽh∥∥∥
L2(Ω)

= ‖|∇Is| − |∇Is,h|‖L2(Ω)

≤‖∇Is −∇Is,h‖L2(Ω)

≤‖Is − Is,h‖H1(Ω)

≤‖Is − Is,h‖H2(Ω)

h→0−→ 0,

by Theorem 6.

Now we can prove convergence of Eb,h and Ef,h to Eb and Ef respectively.

Theorem 8. Given Assumptions 1 and 5 let Eb,h be the unique solution to (5.11) and let
Eb be uniquely defined by (4.3). Similarly let Ef,h and Ef be uniquely determined by (5.13)
and (4.8) respectively. Then Eb,h −→

H1(Ω)
Eb and Ef,h −→

H1(Ω)
Ef as h→ 0.

Proof. Again, we only prove convergence of Eb,h to Eb. Replacing χh by 1 − χh in the
arguments given below show Ef,h −→

H1(Ω)
Ef.
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For v ∈ H1(Ω) we have

Bb,h[Eb,h − Eb, v] =

ˆ
Ω
δv
(
Ẽh − Ẽ

)
+ vẼh (χh − χ) + vχ

(
Ẽh − Ẽ

)
dx

−
ˆ

Ω
β (χh − χ)∇Eb∇v + (χh − χ)Ebv dx,

and thus

|Bb,h[Eb,h − Eb, v]| ≤ ‖v‖H1(Ω)

(∥∥∥Ẽh − Ẽ∥∥∥
L2(Ω)

(
δ + ‖χ‖L∞(Ω)

)
+
∥∥∥Ẽh∥∥∥

L2(Ω)
‖χh − χ‖L∞(Ω)

+(β + 1) ‖Eb‖H1(Ω) ‖χh − χ‖L∞(Ω)

)
.

According to Corollary 6 Ẽh −→
L2(Ω)

Ẽ thus for any ε > 0 there exists K ∈ N such that for

all k ≥ K we have
∥∥∥Ẽh∥∥∥

L2(Ω)
<
∥∥∥Ẽ∥∥∥

L2(Ω)
+ ε. Hence we get

|Bb,h[Eb,h − Eb, v]| ≤ ‖v‖H1(Ω)

[∥∥∥Ẽh − Ẽ∥∥∥
L2(Ω)

(
δ + ‖χ‖L∞(Ω)

)
+

(∥∥∥Ẽ∥∥∥
L2(Ω)

+ ε

)
‖χh − χ‖L∞(Ω)

+(β + 1) ‖Eb‖H1(Ω) ‖χh − χ‖L∞(Ω)

]
.

(5.15)

Let τ

[∥∥∥Ẽh − Ẽ∥∥∥
L2(Ω)

, ‖χh − χ‖L∞(Ω)

]
denote the bracketed expression on the right hand

side of (5.15). By Assumption 5 and Corollary 6 we have χh −→
L∞(Ω)

χ and Ẽh −→
L2(Ω)

Ẽ

respectively. Hence

(5.16) τ

[∥∥∥Ẽh − Ẽ∥∥∥
L2(Ω)

, ‖χh − χ‖L∞(Ω)

]
h→0−→ 0.

Since χh ≥ 0 estimate (4.11) shows that Bb,h is uniformly coercive for all h > 0 with the
coercivity constant C := δmin{β, 1}. Hence for v = Eb,h −Eb relations (5.15) and (5.16)
finally give

‖Eb,h − Eb‖H1(Ω) ≤
1

C
Bb,h[Eb,h − Eb, Eb,h − Eb]

≤ 1

C
τ

[∥∥∥Ẽh − Ẽ∥∥∥
L2(Ω)

, ‖χh − χ‖L∞(Ω)

]
h→0−→ 0,

which proves the claim.

Now we are ready to establish a discrete formulation of Algorithm 3.1.
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5.3 A Discrete Formulation of Algorithm 3.1

Having shown solvability and convergence of a finite element approach for the Inner as
well as for the Outer Iteration we can now give a more detailed and practical pseudo-code
for Algorithm 3.1. Recall that we assumed Ĩh to be the finite element representation of
a quadratic N × N grayscale image. Thus h = 1/N in the x- and y- directions since
Ω = (0, 1)2. Algorithm 3.1 was designed to compute a binary edge map in an iterative
manner. Thus it obviously requires the edge map to be updated regularly. In view of
computational efficiency we thus seek to decouple terms in (5.4), (5.11) and (5.13) that

are not affected by χh from the rest. Hence for uh, vh ∈ S
(m)
h (Ω) with m = 1, 2 let

cχh [uh, vh] :=

ˆ
Ω
χhuhvh dx.

We start by rewriting (5.4) as a linear equation system. Thus let {s(2)
i }

(N+2)2

i=1 be the basis

of S
(2)
h (Ω) addressed in Remark 2. Observe that solving (5.4) means computing coefficients

Is,h,i such that

Is,h =

(N+2)2∑
i=1

Is,h,is
(2)
i .

Thus let Is := {Is,h,i}
(N+2)2

i=1 ∈ R(N+2)2
denote the vector of coefficient values. Recall the

form Ah given by (5.5). Following the idea of separating terms depending on χh from the
rest we define

aχh [uh, vh] :=

ˆ
Ω
χh∇2uh : ∇2vh dx.

Consequently we introduce the following notation for the bending matrix associated to Ah

A[χh] :=
{
aχh [s

(2)
i , s

(2)
j ]
}(N+2)2

i,j=1
∈ R(N+2)2×(N+2)2

.

which reflects its dependence on χh. Similarly the Gram matrix for Ah is denoted by

G[χh] :=
{
cχh [s

(2)
i , s

(2)
j ]
}(N+2)2

i,j=1
∈ R(N+2)2×(N+2)2

.

Stencils illustrating the structure of both matrices A[χh] and G[χh] are given in Ap-
pendix C.2. Let further Ĩ := {Ĩh,i}N

2

i=1 denote the vector of intensity values of Ĩh as given
by (5.2). In contrast to the bending and Gram matrix the right hand side dh of (5.6)

has a simple representation terms of a projection of Ĩ. Thus set v = s
(2)
k in dh and note

that s
(0)
i s

(0)
j = di,j (where di,j denotes the Kronecker delta). Then by using the spline

representations of Ĩh and χh we compute

(5.17) dh[s
(2)
k ] =

N2∑
i,j=1

ˆ
Ω

(δ + χh,i) s
(0)
i Ĩh,js

(0)
j s

(2)
k dx =

N2∑
i=1

ˆ
Ω

(δ + χh,i) Ĩh,is
(0)
i s

(2)
k dx
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We introduce the projection matrix that maps quadratic splines to constants

P2 :=

{ˆ
Ω
s

(0)
i s

(2)
j

}
i=1,...,N2

j=1,...,(N+2)2

∈ RN2×(N+2)2
.

The stencil for P2 can be found in Appendix C.2 as well. Let further χ := {χh,i}N
2

i=1 ∈ RN
2

denote the vector of coefficients of χh as given by (5.3). Then (5.17) is the k-th component
of the vector

P>2

(
(δ + D[χ])Ĩ

)
,

where D[χ] ∈ RN2×N2
denotes a diagonal matrix with the values χh,i of χh on its main

diagonal. Thus we eventually obtain the following expression for (5.4)

(βA[χh] +G[χh] + δ (βA[1] +G[1])) Is = P>2

(
(δ + D[χ])Ĩ

)
.

In a similar manner we can deduce linear equation systems for (5.11) and (5.13). Thus let

{s(1)
i }

(N+1)2

i=1 denote the basis of S
(1)
h (Ω). We want to determine

Eb := {Eb,h,i}
(N+1)2

i=1 ∈ R(N+1)2
and Ef := {Ef,h,i}

(N+1)2

i=1 ∈ R(N+1)2
such that

Eb,h =

(N+1)2∑
i=1

Eb,h,is
(1)
i and Ef,h =

(N+1)2∑
i=1

Ef,h,is
(1)
i .

Following the strategy above we start by considering (5.11). We analogously introduce

bχh [uh, vh] :=

ˆ
Ω
χh∇uh · ∇vh dx,

and thus obtain the stiffness matrix

B[χh] :=
{
bχh [s

(1)
i , s

(1)
j ]
}(N+1)2

i,j=1
∈ R(N+1)2×(N+1)2

,

for Bb,h given by (5.12). The Gram matrix associated to Bb,h is given by

C[χh] :=
{
cχh [s

(1)
i , s

(1)
j ]
}(N+1)2

i,j=1
∈ R(N+1)2×(N+1)2

.

Again, the stencils structuring both matrices are given in Appendix C.2. Similar to the
situation above we can express the right hand side fb,h of (5.11) in terms of Ẽh and a
projection. Note that since Ẽh = |∇Is,h| we have Ẽh ∈ L2(Ω). Thus let Ph denote the

L2(Ω)-projection onto S
(1)
h (Ω), i.e., Ph : L2(Ω)→ S

(1)
h (Ω). Then by using the spline rep-

resentations of χh ∈ S
(0)
h (Ω) and (PhẼh) ∈ S(1)

h (Ω) with Ẽ :={(PhẼh)i}(N+1)2

i=1 ∈ R(N+1)2

denoting the coefficient vector of PhẼh we compute

(5.18) fb,h[s
(1)
k ] =

(N+1)2∑
j=1

ˆ
Ω

N2∑
i=1

(δ + χh,i) s
(0)
i (PhẼh)js

(1)
j s

(1)
k dx.
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Thus (5.18) is the k-th component of the vector

(δC[1] +C[χh]) Ẽ,

and thus we obtain the following linear system that is equivalent to (5.11)

(βB[χh] +C[χh] + δ (βB[1] +C[1]))Eb,h = (δC[1] +C[χh]) Ẽ.

Analogously (5.13) leads to the system

(βB[1− χh] +C[1− χh] + δ (βB[1] +C[1]))Ef = (δC[1] +C[1− χh]) Ẽ, .

Having deduced explicit expressions for the linear equation systems arising from (5.4),
(5.11) and (5.13) we can now turn to the practical computation of χh. Note that PhẼh,

Eb,h and Ef,h are elements of S
(1)
h (Ω) and thus the associated coefficient vectors are in

R(N+1)2
. However, χh ∈ S

(0)
h (Ω) and hence χ ∈ RN2

. Thus we introduce the projection
matrix that maps linear splines to constants, i.e.,

P1 :=

{ˆ
Ω
s

(0)
i s

(1)
j

}
i=1,...,N2

j=1,...,(N+1)2

∈ RN2×(N+1)2
.

For its stencil see Appendix C.2. Hence in practice we compute

χ = bool
(
ϑ
∣∣∣P1(Eb − Ẽ)

∣∣∣ ≤ ∣∣∣P1(Ef − Ẽ)
∣∣∣) .

Note that the Inner Iteration was designed with the hypothesis in mind that it forms a
fixed point iteration. While it has been discussed (compare Remark 1) that this is not true
in general, numerous numerical tests showed, however, that in practice convergence of the
Inner Iteration is quite robust. This was a key observation in the design of an appropriate
stopping criterion. First, we want the Inner Iteration to terminate if the computed edge
map does not change any more. However, we also want to include a safeguard that stops
the iteration if the segmentation of Ẽh comes to a standstill, i.e., if updating Eb,h and Ef,h

shows no effect. Note that by construction, changes in the foreground image are reflected
in the background image and vice versa. Thus including Ef,h in the stopping criterion for
the Inner Iteration is equivalent to using Eb,h in it.
The design of the Outer Iteration was inspired by a similar fixed point assumption. How-
ever, in the course of developing Algorithm 3.1, this original motivation faded. It turned
out that the quality of edge maps obtained after convergence of the Inner Iteration was
usually very high. Thus the Outer Iteration rather mimics the technique of iterative refine-
ment used in the context of linear equation systems (see, e.g., [DH02]). This resemblance
also motivates choosing the maximal number of Outer Iterations kmax

out smaller than its In-
ner Iteration counterpart kmax

in . Furthermore, these observations are also reflected in the
stopping criterion for the Outer Iteration. If two successive results of the Inner Iteration
do not change or if the smooth image Is,h (that is based on χh) stagnates we want the
Outer Iteration and thus the whole Algorithm to terminate. These ideas are summarized
in Algorithm 5.1.
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Algorithm 5.1 Pseudo-code for Algorithm 3.1

Input: Ĩh =
∑N2

i=1 Ĩh,is
(0)
i , β, δ, ϑ

Output: χh, Is,h

1: Compute an initial guess χ using K-means clustering (Section 2.3) with K = 2
2: Assemble the matrices P1, P2 as well as

Mout = δ (βA[1] +G[1]) and Min = δ (βB[1] +C[1])

3: Choose tolout, tolin ∈ (0, 1) and kmax
out , k

min
in ∈ N>1 as well as 0 < τε � 1

4: Set kout = 0, rout = 2 · tolout, Ĩ = {Ĩh,i}N
2

i=1 as well as

Is = (0, . . . , 0)> ∈ R(N+2)2
and Ef = (0, . . . , 0)> ∈ R(N+1)2

5: while rout > tolout and kout < kmax
out do

6: kout ← kout + 1
7: χout ← χ and Is,out ← Is

8: Solve

(βA[χh] +G[χh] +Mout) Is = P>2

(
(δ + D[χh])Ĩ

)
,

9: Compute Ẽh = |∇Is,h| and Ẽ
10: Set kin = 0 and rin = 2 · tolin

11: while rin > tolin and kin < kmax
in do

12: kin ← kin + 1
13: χin ← χ and Ef,in ← Ef

14: Solve
(βB[χh] +C[χh] +Min)Eb = (δC[1] +C[χh]) Ẽ,

15: Solve

(βB[1− χh] +C[1− χh] +Min)Ef = (δC[1] +C[1− χh]) Ẽ,

16: Compute

χ = bool
(
ϑ
∣∣∣P1(Eb − Ẽ)

∣∣∣ ≤ ∣∣∣P1(Ef − Ẽ)
∣∣∣) ,

17: Compute

rin = max |χin − χ| ·
|Ef,in −Ef|
|Ef|+ τε

18: end while
19: Compute

rout = max |χout − χ| ·
|Is,out − Is|
|Is|+ τε

20: end while
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Theorems 6 and 8

uδ ← uδh

Theorem 10 ↓ ↓ Theorem 12

u? ← u?h
Theorem 11

Figure 5.2: Sketch illustrating the convergence results presented in this section. The arrows ”↓”
indicate the limit δ → 0 while ”←” means h→ 0.

5.4 Investigation of Vanishing Regularization Solutions

Recall that δ was introduced in the functionals F and J given by (3.1) and (3.2) re-
spectively as a safeguard in case χ has not yet accurately converged to a characteristic
function with positive measure support. Hence we always assumed that 0 < δ � 1. Thus,
a natural question is whether solutions of (4.3), (4.8) and (4.63) admit a unique limit as
δ → 0. The following investigation is devoted to this question and additionally addresses
the asymptotic behavior of the associated finite element discretizations (5.11), (5.13) and
(5.4) respectively. The convergence diagram in Figure 5.2 illustrates the procedure.
The results presented below are based on the theory given in [GR80, Chap. 1 §4, Chap. 2 §1].
For the sake of brevity we will take a more general approach in this section and introduce
notation to cover both the Inner and Outer Iterations. Before we start our discussion
recall Assumption 5. We presumed that χh −→

L∞(Ω)
χ as h→ 0. Since χ is a characteristic

function, i.e., Rg(χ) = {0, 1}, this approximation property essentially means that χ is a
grid function for h small enough. Since we will also address the behavior of respective
finite element discretizations in the limit of vanishing regularization we explicitly pose this
condition on χ straight away.

Assumption 7. Let Ω := (0, 1)2, m ∈ {1, 2} and ũ ∈ L2(Ω). Further, let β > 0,
0 < δ � 1 and assume χ is a characteristic function defined on a rectangular grid on
Ω for h small enough. Suppose that Ωχ := supp(χ) ( Ω is open, non-empty and {Ω̄χ is
open.

Note that the premises on Ωχ and {Ω̄χ permit the definition of Sobolev spaces on these
sets. Further, any open set has positive measure which allows the formulation of variational
problems. In the following discussion we focus on the set Ωχ. However, all results presented
below can be applied to {Ω̄χ as well by replacing χ by 1− χ in the respective forms.
Given Assumption 7 we start by introducing

G[u, χ] :=
1

2

ˆ
Ω
|u− ũ|2 χ+ βχ |∇mu|2 dx,

and define

(5.19) Gδ[u] := G[u, χ] + δG[u, 1].

Thus ũ plays the role of Ẽ in the Inner and Ĩ in the Outer Iteration. We consider the
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optimization problem

(5.20) inf
u∈Hm(Ω)

Gδ[u].

Then Theorems 1 and 3 guarantee that (5.20) has a unique solution

uδ := arg min
u∈Hm(Ω)

Gδ[u],

that satisfies the weak formulation of the necessary optimality conditions associated to
(5.20), namely

(5.21) Qδ[u
δ, v] = Sδ[v], ∀v ∈ Hm(Ω),

where Qδ : Hm(Ω)×Hm(Ω)→ R is a bilinear form

Qδ[u, v] :=

ˆ
Ω
β(δ + χ)∇mu : ∇mv + (δ + χ)uv dx,

with ∇mu : ∇mv denoting a component-wise matrix scalar product for m = 2 and the
standard vector scalar product for m = 1 and Sδ : Hm(Ω)→ R is a linear functional

Sδ[v] :=

ˆ
Ω
ũ(δ + χ)v dx.

We first prove a technical result that will be crucial in the following.

Lemma 7. Given Assumption 7 consider the Hilbert spaces Hm(Ωχ) and Hm(Ω). Then

1. The form 〈·, ·〉Hm(Ωχ) defined by

〈λ, µ〉Hm(Ωχ) :=

ˆ
Ωχ

β∇mλ : ∇mµ+ λµdx, ∀λ, µ ∈ Hm(Ωχ),

is an inner product on Hm(Ωχ) that induces the norm |·|Hm(Ωχ) :=
√
〈·, ·〉Hm(Ωχ)

which is equivalent to the usual norm ‖·‖Hm(Ωχ) on Ωχ.

2. Similarly

|v|2Hm(Ω) :=

ˆ
Ω
β |∇mv|2 + v2dx, ∀v ∈ Hm(Ω),

induces a norm on Hm(Ω) which is equivalent to the usual norm ‖·‖Hm(Ω) on Ω.

3. There exists a bounded linear extension operator E : Hm(Ωχ)→ Hm(Ω), i.e.,

(5.22) ‖Eµ‖Hm(Ω) ≤ α0 |µ|Hm(Ωχ) , ∀µ ∈ Hm(Ωχ),

for some α0 > 0.

Proof. The second claim is a consequence of Corollary 4.16 in [Ada75] which also covers
the third claim. Thus there exist positive constants α1 and α2 such that

(5.23) α1 |µ|Hm(Ωχ) ≤ ‖µ‖Hm(Ωχ) ≤ α2 |µ|Hm(Ωχ) , ∀µ ∈ Hm(Ωχ).

69



5 Numerical Approximation

Note that for m = 1 this inequality chain is readily established with α1 = 1/max{1, β}
and α2 = 1/min{1, β}. Similarly we have

(5.24) α3 |v|Hm(Ω) ≤ ‖v‖Hm(Ω) ≤ α4 |v|Hm(Ω) , ∀v ∈ Hm(Ω),

for α3, α4 > 0. For the third claim observe that the corners of Ωχ all are at right angles.
Thus smooth functions in Ωχ can be extended smoothly outside Ωχ and consistently
at all corners (i.e., horizontally and vertically yields the same results as vertically and
horizontally). Hence the claim follows as in the proof of Theorem 5.4 in [Sho94, Chap. 5].

In the following we will always endow Hm(Ωχ) with the introduced norm |·|Hm(Ωχ). This
space will play a key role for the analysis presented below.

5.4.1 Asymptotic Behavior in the Continuum

Since we are interested in the limiting behavior of uδ as δ → 0 we start by looking at
Qδ=0. Note that while Qδ is defined on Hm(Ω) the natural domain of Qδ=0 are Sobolev
functions on Ωχ. Thus, heuristically speaking, the reference spaces change in the lim-
iting process. This makes a straight forward analysis of (5.21) very difficult. Hence
we employ considerations from duality theory (see, e.g., [ET99]). We decouple terms in
(5.21) that depend on χ from those that do not in order to obtain a primal-dual formu-
lation of (5.21). Thus using the previously introduced spaces we define bilinear forms
q : Hm(Ω)×Hm(Ω)→ R and r : Hm(Ω)×Hm(Ωχ)→ R given by

q[u, v] :=

ˆ
Ω
β∇mu : ∇mv + uv dx,

and

r[u, λ] =

ˆ
Ω

(β∇mu : ∇mλ+ uλ)χdx,

respectively. Further, let z : Hm(Ωχ)×Hm(Ωχ)→ R be defined by z[λ, µ] := 〈λ, µ〉Hm(Ωχ).

Note that q and r are continuous since for any u, v ∈ Hm(Ω) and λ ∈ Hm(Ωχ) we have

(5.25) |q[u, v]| ≤ (β + 1) ‖u‖Hm(Ω) ‖v‖Hm(Ω) ,

and

(5.26) |r[u, λ]| ≤ (β + 1) ‖u‖Hm(Ω) |λ|Hm(Ωχ) .

Obviously z is continuous as well (by Lemma 7). Further, we introduce the functionals
s1 : Hm(Ω)→ R and sχ : Hm(Ωχ)→ R defined by

s1[v] :=

ˆ
Ω
ũv dx, and sχ[µ] :=

ˆ
Ωχ

ũµ dx,

which are also continuous

(5.27) |s1[v]| ≤ ‖ũ‖L2(Ω) ‖v‖Hm(Ω) , and |sχ[µ]| ≤ ‖ũ‖L2(Ω) |µ|Hm(Ωχ) .
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Then a primal dual formulation of (5.21) is established as follows.

Theorem 9. Given Assumption 7 there exists a unique (uδ, λδ) ∈ Hm(Ω)×Hm(Ωχ) such
that

q[uδ, v] + r[v, λδ] =s1[v], ∀v ∈ Hm(Ω),(5.28a)

r[uδ, µ]− δz[λδ, µ] =sχ[µ], ∀µ ∈ Hm(Ωχ),(5.28b)

where uδ ∈ Hm(Ω) denote the unique solution of (5.21).

Proof. Let µ ∈ Hm(Ωχ). Then by Lemma 7, every µ ∈ Hm(Ωχ) permits an extension
Eµ = µe ∈ Hm(Ω). Clearly,

r[v, µe] =r[v, µ], ∀v ∈ Hm(Ω),(5.29)

z[λ, µe] =z[λ, µ], ∀λ ∈ Hm(Ωχ),

sχ[µe] =sχ[µ].

Thus (5.28b) can be extended in µe ∈ Hm(Ω). Hence let v = µe in (5.28a). Then by
multiplying (5.28a) by δ and adding both equations of (5.28), λδ is eliminated and (5.21)
is obtained. Let uδ be given by (5.21). Then (5.28b) can be rewritten such that

(5.30) δz[λδ, µ] = r̃[µ], ∀µ ∈ Hm(Ωχ),

where r̃[µ] := r[uδ, µ]− sχ[µ]. According to (5.26) and (5.27), r and sχ are bounded; thus,
r̃ is continuous. By Lemma 7, z is bounded and coercive on Hm(Ωχ). Hence according

to the Lax–Milgram Lemma (Appendix B.2), let λδ be given by (5.30). Suppose (ûδ, λ̂δ)
is another solution to (5.28). Then by above any ûδ must solve (5.21), so ûδ = uδ. Thus,
r[ûδ, µ] = r[uδ, µ] for all µ ∈ Hm(Ωχ) which in (5.30) yields λ̂δ = λδ. Hence uniqueness of
(uδ, λδ) follows.

Having established the primal-dual formulation (5.28) we now need to characterize a pos-
sible limit u? of uδ as δ → 0. A natural candidate for u? is the solution (if existent) of
(5.28) with δ = 0 such that δz vanishes. A less heuristic derivation follows considerations
from optimization theory. Thus suppose the limit u? exists. With a closer look at (5.19)
we might expect that u? solves

(5.31) minG[u, 1] subject to
δG
δu

[u, χ; v] = 0, ∀v ∈ C∞(Ω̄),

where δG
δu [u, χ; v] denotes the Gâteaux derivative (see Appendix B.2) of G in an arbitrary

direction v ∈ C∞(Ω̄). The standard approach for solving such a constrained optimiza-
tion problem is to consider the associated Lagrange functional (compare, e.g., [GR80,
Chap. 1, Sec. 4.2]). Thus we start by computing

δG
δu

[u, χ; v] =
d

ds

(
1

2

ˆ
Ω

(
|u+ sv − ũ|2 + β |∇m(u+ sv)|2

)
χdx

)
=

ˆ
Ω

((u− ũ)v + β∇mu : ∇mv)χdx, ∀v ∈ C∞(Ω̄).
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By Lemma 7, every λ ∈ Hm(Ωχ) can be approximated arbitrarily well in Hm(Ωχ) by some
v ∈ C∞(Ω̄). Hence

δG
δu

[u, χ;λ] =

ˆ
Ω

((u− ũ)vλ+ β∇mu : ∇mλ)χdx, ∀λ ∈ Hm(Ωχ).

Then the Lagrangian associated to (5.31) is given by

L[u, λ] := G[u, 1] +

ˆ
Ω

((u− ũ)λ+ β∇mu : ∇mλ)χdx, u ∈ Hm(Ω), λ ∈ Hm(Ωχ),

and thus we (formally) obtain the optimality conditions

δL

δu
[u, λ; v] =

ˆ
Ω

(u− ũ)v + β∇mu : ∇mv +

ˆ
Ω

(vλ+ β∇mv : ∇mλ)χdx, ∀v ∈ Hm(Ω),

and
δL

δλ
[u, λ;µ] =

ˆ
Ω

((u− ũ)µ+ β∇mu : ∇mµ)χdx, ∀µ ∈ Hm(Ωχ).

Then using the notation introduced above the optimality system
δL

δu
[u, λ; v] =0, ∀v ∈ Hm(Ω),

δL

δλ
[u, λ;µ] =0, ∀µ ∈ Hm(Ωχ),

leads indeed to the following saddle point problem. Find (u?, λ?) ∈ Hm(Ω) × Hm(Ωχ)
satisfying

q[u?, v] + r[v, λ?] =s1[v], ∀v ∈ Hm(Ω),(5.32a)

r[u?, µ] =sχ[µ], ∀µ ∈ Hm(Ωχ).(5.32b)

The Theorem below proves the conjecture that (u?, λ?) is the actual limit of (uδ, λδ) as
δ → 0.

Theorem 10. Given Assumption 7 let (uδ, λδ) ∈ Hm(Ω)×Hm(Ωχ) be the unique solution
to (5.28). Then (5.32) has a unique solution (u?, λ?) ∈ Hm(Ω)×Hm(Ωχ) and uδ −→

Hm(Ω)
u?

as well as λδ −→
Hm(Ωχ)

λ? as δ → 0.

Proof. Theorem 9 guarantees existence and uniqueness of (uδ, λδ) ∈ Hm(Ω) × Hm(Ωχ).
We show that the Conditions [GR80, (4.9), (4.25), (4.31)] of Theorem 4.3 in [GR80,
Chap. 1, Sec. 4.3] are met. Thus we start by proving that

(5.33) inf
µ∈Hm(Ωχ)

sup
v∈Hm(Ω)

r[v, µ]

‖v‖Hm(Ω) |µ|Hm(Ωχ)

≥ αr,

for some positive real number αr. By Lemma 7 any µ ∈ Hm(Ωχ) permits an extension
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5.4 Investigation of Vanishing Regularization Solutions

Eµ = µe ∈ Hm(Ω). Then by (5.22) and (5.29) we get

sup
v∈Hm(Ω)

r[v, µ]

‖v‖Hm(Ω)

=
r[v, µe]

‖v‖Hm(Ω)

≥ r[µe, µe]

‖µe‖Hm(Ω)

=
r[µ, µ]

‖µe‖Hm(Ω)

≥
|µ|2Hm(Ωχ)

α0 |µ|Hm(Ωχ)

=
1

α0
|µ|Hm(Ωχ) .

(5.34)

Hence (5.33) holds with αr = 1/α0 and thus Condition [GR80, (4.9)] is established. Note
further that since z[µ, µ] = |µ|2Hm(Ωχ) the operator Z ∈ L(Hm(Ωχ), Hm(Ωχ)′) associated
to z by

〈Zλ, µ〉Hm(Ωχ) = z[λ, µ], ∀λ, µ ∈ Hm(Ωχ),

is the identity and thus Condition [GR80, (4.25)] follows. Let similarly
R ∈ L(Hm(Ω), Hm(Ωχ)′) be the operator associated to r. Thus R is the continuous
embedding of Hm(Ω) into Hm(Ωχ)′ and hence

(5.35)
〈
Z−1Rv,Rv

〉
Hm(Ω)

= q[v, v], ∀v ∈ Hm(Ω).

Note that q[v, v] = |v|2Hm(Ω) and by Lemma 7 |·|Hm(Ω) is equivalent to ‖·‖Hm(Ω) on Hm(Ω).
Thus by (5.24) we have

(5.36) q[v, v] ≥ 1

α4
‖v‖2Hm(Ω) , ∀v ∈ Hm(Ω),

and hence the final Condition [GR80, (4.31)] of Theorem 4.3 in [GR80, Chap. 1, Sec. 4.3]
is met which proves the claim.

Note that uδh → uδ has been shown in Theorems 6 and 8. Thus in order to complete the
convergence sketch of Figure 5.2 it remains to prove that uδh → u?h and u?h → u?.

5.4.2 Asymptotic Behavior of Finite Element Discretizations

Recall that by Assumption 7, χ is a grid function for h small enough. Thus for some h we
have χh = χ. Hence to simplify the argumentation below suppose h is sufficiently small
so that we have χh = χ straight away. The second item of Assumption 5 governs data ap-
proximation. Recall that we presumed that Ĩh −→

L∞(Ω)
Ĩ which does not pose any restriction

on the raw data Ĩ. Under this condition, however, proving convergence of finite element
discretizations of (5.28) and (5.32) requires profound adaptations of the classical theory
given in [GR80] and makes the argumentation substantially more complex. The recent
work [KKP12] develops the necessary technical means and presents a rigorous analysis
of finite element discretizations that respect the pixelwise averaged data representation
characteristic to digital images. However, given that the focus of the present work is not
on numerical analysis of finite elements, we decided to follow the standard approach of
[GR80] by assuming that Ĩh = Ĩ. In other words, we suppose that the raw image is
piecewise constant. We summarize these considerations in the following Assumption.

Assumption 8. Suppose h is sufficiently small so that χh = χ and assume further that
ũh = ũ.
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Now we can start by formulating a finite element discretization of (5.32) as follows. Find

(u?h, λ
?
h) ∈ S(m)

h (Ω)× S(m)
h (Ωχ) such that

q[u?h, vh] + r[vh, λ
?
h] =s1[vh], ∀vhS

(m)
h (Ω),(5.37a)

r[u?h, µh] =sχ[µh], ∀µh ∈ S
(m)
h (Ωχ).(5.37b)

The following Theorem shows that (5.37) indeed approximates (5.32).

Theorem 11. Given Assumptions 7 and 8 let (u?, λ?) ∈ Hm(Ω) × Hm(Ωχ) denote the

unique solution to (5.32). Then (5.37) has a unique solution (u?h, λ
?
h) ∈ S(m)

h (Ω)×S(m)
h (Ωχ)

and u?h −→
Hm(Ω)

u? as well as λ?h −→
Hm(Ωχ)

λ? as h→ 0.

Proof. Theorem 10 guarantees existence and uniqueness of (u?, λ?) ∈ Hm(Ω)×Hm(Ωχ).
We show that the Conditions [GR80, (1.10), (1.12)] of Theorem 1.1.2°) in

[GR80, Chap. 2, Sec. 1.1] are met. Note that S
(m)
h (Ω) ⊂ Hm(Ω) and S

(m)
h (Ωχ) ⊂ Hm(Ωχ).

Thus (5.34) immediately implies

sup
vh∈S

(m)
h (Ω)

r[vh, µh]

‖vh‖Hm(Ω)

≥ 1

α0
|µh|Hm(Ωχ) , ∀µh ∈ S

(m)
h (Ωχ),

hence [GR80, (1.12)] holds. Similarly (5.36) yields

(5.38) q[vh, vh] ≥ 1

α4
‖vh‖2Hm(Ω) , ∀vh ∈ S

(m)
h (Ω),

and thus [GR80, (1.10)] is satisfied. Then Theorem 1.1.2°) in [GR80, Chap. 2, Sec. 1.1]
proves the claim.

Similarly, we set up a finite element discretization of (5.28) as follows. Find

(uδh, λ
δ
h) ∈ S(m)

h (Ω)× S(m)
h (Ωχ) such that

q[uδh, vh] + r[vh, λ
δ
h] =s1[vh], ∀vh ∈ S

(m)
h (Ω),(5.39a)

r[uδh, µh]− δz[λδh, µh] =sχ[µh], ∀µh ∈ S
(m)
h (Ωχ).(5.39b)

Then the result below proves that for small δ (5.39) and (5.37) approximate (5.28) and
(5.32) respectively which finally completes the convergence sketch of Figure 5.2.
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Theorem 12. Given Assumptions 7 and 8 let (u?h, λ
?
h) ∈ S(m)

h (Ω)× S(m)
h (Ωχ) denote the

unique solution to (5.37). Then (5.39) also as a unique solution

(uδh, λ
δ
h) ∈ S(m)

h (Ω)× S(m)
h (Ωχ) that satisfies uδh −→

Hm(Ω)
u?h and λδh −→

Hm(Ωχ)
λ?h as δ → 0.

Proof. Theorem 11 guarantees existence and uniqueness of (u?h, λ
?
h) ∈ S(m)

h (Ω)×S(m)
h (Ωχ).

The rest of the claim is an immediate consequence of Theorem 10 which shows that the
Conditions [GR80, (1.12), (1.24), (1.27)] of Theorem 1.3 in [GR80, Chap. 2, Sec. 1.2]

are met. Since S
(m)
h (Ω) ⊂ Hm(Ω) and S

(m)
h (Ωχ) ⊂ Hm(Ωχ) relation (5.35) holds for

any vh ∈ S
(m)
h (Ω). Hence [GR80, (1.24), (1.27)] are satisfied. Further, (5.38) implies

that [GR80, (1.12)] must hold as well. Hence all conditions of Theorem 1.3 in [GR80,
Chap. 2, Sec. 1.2] are met which proves the claim.

The next chapter presents results of Algorithm 5.1 and discusses its performance compared
to existing approaches.
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6
Numerical Results

The results shown in this chapter have been computed on a Dell Optiplex 745 with 8GB of
RAM. The operating system used was openSUSE Linux 12.1 based on a 64bit architecture
using kernel 3.5.2-39. All codes have been written in MATLAB [MAT10] and Python
[vRD12] making extensive use of the packages NumPy and SciPy [JOP+ ]. In a slight
abuse of notation we will refer to all quantities by their continuum notation, i.e., we will
use χ instead of χh or χ to denote a binary edge map. However, all images depicted
below are of course digital grayscale images given as square N ×N arrays of pixels. In the
following we discuss the performance of the segmentation approach introduced in practice.
We start by considering an artificial image and compare results of Algorithm 5.1 to existing
methods. Later in the chapter we will focus on magnetic resonance (MR) images taken
from a dynamic contrast enhanced (DCE) sequence.

6.1 Choosing Parameters

We return to the artificial image depicted in Figure 2.2 that was already used throughout
Chapter 2. The resolution of the image is N = 256 and its intensities are normalized to
be in the range [0, 1]. Figure 3.5 shows the result of Algorithm 5.1 for β = 5, δ = 0.2 and

ϑ = 1. Note that β is a smoothing parameter, so large values of β penalize
∣∣∇2Is

∣∣2 on
supp(χ) and thus induce Is to be smooth on connected components of the support of the
binary edge map. Since the image considered here is artificial and free of noise we choose
β small; in the presence of noise, however, β has to be increased significantly (which is
addressed in the next section). Thus an adequate choice of β is crucial for the performance
of Algorithm 5.1. Note, however, that the approach presented is not particularly sensitive
to β. For instance, setting β = 15 and δ = 0.2 for the artificial image of Figure 2.2 yields a
result that is visually identical to the one shown in Figure 3.5. Thus only greatly ill-chosen
values for β deteriorate the computed edge map.
Recall that δ was introduced as a safeguard for the case that initial guesses for the edge
map χ are inaccurate. Hence δ should always be significantly smaller than β. It turned out
that δ ∈ [0.001, 1] yields good results for most images. Note, however, that Algorithm 5.1
is rather stable with respect to δ, e.g., with δ = 0.5 and β = 5 for the artificial image of
Figure 2.2 the computed results are visually identical. We only observed negative effects
if δ ≈ β. However, given the role of δ in modeling the functionals F and J given by (3.1)
and (3.2), respectively, this behavior was to be expected.
As pointed out above ϑ may be seen as an edge thickness parameter. Low values of ϑ
give thin edges whereas larger values induce the zero regions of χ to grow, yielding thicker
edges. Hence, especially compared to β or δ, rather small changes in ϑ have a discernible
impact on the final result obtained by Algorithm 5.1. An important observation in this
context is the dependence of ϑ on the resolution of the considered digital image. Of course,
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kout kin rin rout

1 1 1 –
1 2 0 1

2 1 0.0098585 0.0025984

3 1 0 0

kout kin rin rout

1 1 1 –
1 2 0 1

2 1 0.0098585 –
2 2 0 0.0025984

3 1 0 0

Table 6.1: The convergence history of Algorithm 5.1 given the artificial image depicted in Fig-
ure 2.2. Shown is the iteration progression for tolin = tolout = 1.0e − 2 (left) and
tolin = tolout = 1.0e− 12 (right).

all parameters depend implicitly on the size of the image Ĩ, e.g., β = 5 may be too large for
the same artificial image at the lower resolution N = 32. However, due to the prominent
role of ϑ in the computation of χ the influence of the image resolution on ϑ is immediately
visible. Especially low values of ϑ require sufficiently large values of N (or equivalently
h small enough). Note that this can be remedied to some extent by always using ϑ = 1
in the first run of the Inner Iteration, then reducing ϑ to the desired value for subsequent
cycles. However, in general setting ϑ = 1 turned out to be a valid choice for most images
and thus this value was used as a default value.
It was mentioned above that the Outer Iteration rather resembles an iterative refinement
strategy than a fixed point iteration. Thus we always choose kmax

out ≤ kmax
in . Note that

for most images kmax
out = 2 already provides visually good results even if the error rout is

not (yet) below tolout. We have seen that continuing to run Algorithm 5.1 to numerical
convergence of the Outer Iteration, i.e . rout < tolout, does not significantly improve the
quality of the final result in many cases. Thus for all simulations presented below we chose
kmax

out between 2 and 5. The maximal number of steps of the Inner Iteration is chosen as
follows. Note that every step of the Inner Iteration involves solving two linear equation
systems. Thus large values of kmax

in may result in high computational cost if convergence is
slow. On the other hand picking kmax

in very small may increase performance at the expense
of quality if the computed edge map is not sufficiently close to its limit. Thus there is
a trade off between performance and quality. In practice, values between 10 and 20 for
kmax

in provided good edge maps without being computationally very expensive. Note that
we have observed that the first run of the Inner Iteration may not converge if the initial
guess for χ was poor. However, subsequent runs of the Inner Iteration tend to converge
within the first 5-6 steps. If rin ≥ tolin after 10 steps then the convergence is usually slow
and generally the converged edge map does not significantly differ from χ after 10 steps.
Note that, of course, the choice of kmax

in and kmax
out is tightly connected to the specific values

of the stopping tolerances tolin and tolout respectively. While the value of tolout is less
critical since kmax

out is usually selected very low anyway, tolin has to be chosen more carefully.
It turned out that tolin = tolout = 1.0e− 2 provided satisfactory performance in practice.
As a rule of thumb we observed that once rin is lower than 1.0e−2 usually within the next
two or three steps a fixed point is reached, i.e., χ becomes stationary such that rin = 0.
To further illustrate these considerations Table 6.1 shows the convergence history for
the result shown in Figure 3.5 using first tolin = tolout = 1.0e − 2 (left table) then
tolin = tolout = 1.0e − 12 (right table). Note that indeed one further Inner Iteration
in the second run of the Outer Iteration suffices to get rin = 0. However, the result ob-
tained using stricter error tolerances is visually identical. Note further that solving (5.4)
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Figure 6.1: Result of Algorithm 5.1 for an artificial image corrupted by 5% additive Gaussian white
noise using the parameter values β = 5e4, δ = 0.4 and ϑ = 1.

takes about three seconds in MATLAB (on the above specified system) while the solution
of (5.11) and (5.13) is computed within around one second each. This difference is mainly
due to the more complex density pattern of the coefficient matrix in (5.4) (compare the
stencils given in Appendix C.2). The elaborate nonzero structure of the bending matrix
A[χh] makes the solution of (5.4) computationally more expensive than solving (5.11) or
(5.13). Moreover, the size of the system set up to compute Is is larger.
Note that in the course of the development of Algorithm 5.1 various parameter setups
have been thoroughly tested. For instance, it turned out that determining β and δ in-
dependently for the Inner and Outer Iteration has little to no effect on the quality of
results or convergence speed. Moreover, an adaptive strategy for determining kmax

in was
tested. The idea was to choose rather large values for both kmax

out and kmax
in , e.g., kmax

out = 20
and kmax

in = 50, and successively reduce kmax
in in subsequent steps of the Outer Iteration.

Since this strategy did not noticeably improve results but led to a substantial drop in
performance for some images we decided against it. Note that relaxation strategies for
Eb, Ef and Is have been investigated as well. None of which, however, improved results
or performance of Algorithm 5.1 significantly.
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kout kin rin rout

1 1 1 –
1 2 0.062202 –
1 3 0.0001253 1

2 1 3.8203e-06 3.0418e-07

kout kin rin rout

1 1 1 –
1 2 0.062202 –
1 3 0.0001253 –
1 4 0 1

2 1 9.3604e-07 –
2 2 0.0019681 –
2 3 0 3.0418e-07

3 1 0 0

Table 6.2: The convergence history of Algorithm 5.1 for the artificial image corrupted by 5% addi-
tive Gaussian white noise depicted in Figure 2.8. Shown is the iteration progression for
tolin = tolout = 1.0e− 2 (left) and tolin = tolout = 1.0e− 12 (right).

6.2 The Noisy Artificial Image

In order to put better the performance of our approach into the context of existing methods
we focus now on a more challenging example. We consider the artificial image introduced
in Chapter 2 corrupted by 5% additive Gaussian white noise (as for instance depicted
in Figure 2.8). Figure 6.1 shows the result of Algorithm 5.1 for this image. Due to the
presence of noise we had to increase significantly the value of β (compared to the noise
free case) so that Is and hence Ẽ = |∇Is| become sufficiently smooth on the support of
χ. Note that depending on the quality of the initial guess for χ, a too small value for the
safeguard δ may deteriorate results for such large values of β. Algorithm 5.1 again proves
its stability with respect to β and δ, i.e., mild variations in both parameters do not change
the result visibly. Only a significant drop in β, e.g., β ≤ 1e3, reduces the smoothness of
Is and thus leads to visible noise artifacts in χ. As addressed above using low stopping
tolerances proved to be beneficial in this case. Table 6.2 shows the convergence history of
Algorithm 5.1 for tolin = tolout = 1.0e−2 and tolin = tolout = 1.0e−12. Note that stricter
stopping tolerances led to significantly more iterations while having no visible effect on
the result.
We start our comparison of Figure 6.1 to results obtained by existing methods by first
considering the TV denoised reconstruction seen in Panel (c) of Figure 2.9 (for ν = 0.4).
The corresponding Chambolle edges |p|1 and |p|∞ are depicted in Panels (a) and (c) of
Figure 2.10 respectively. As pointed out in Section 2.4 in contrast to the edge map com-
puted by Algorithm 5.1 neither |p|1 nor |p|∞ are binary. Thus thresholding would be
necessary in order for an evaluation of χ with respect to |p|1 or |p|∞ to make sense. How-
ever, to avoid introducing an additional layer of processing and thus potential corruption
of results we rely on the non-binary Ẽ for comparison instead. Note that in contrast to the
Chambolle edges Ẽ manifests less background noise which makes Ẽ a potentially better
candidate for the extraction of a binary edge map. However, especially in the upper left
corner Ẽ exhibits some very weak edges that are better visible in |p|1 or |p|∞. Note further
that ITV may look ”cleaner” than Is, however, the TV denoised image shows staircasing
artifacts that are not present in Is. The smooth image computed by Algorithm 5.1 thus
better reflects the gradual intensity variations seen in the clean original image.
Next, we focus on an Ambrosio–Tortorelli segmentation of the same noisy image. Fig-
ure 6.2 presents the results. In order to account for the noise corruption in the raw image
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(a) (b)

Figure 6.2: Ambrosio–Tortorelli segmentation of the artificial image corrupted by 5% additive Gaus-
sian white noise depicted in Figure 2.8. Shown is the computed reconstruction (a) and
phase function (b) for the parameters ε = 0.1 and κ = 10.

we set κ = 10 in JAT given by (2.10). This, however, introduces significant blur in the
computed reconstruction IAT. Nevertheless, compared to the TV denoising result, IAT

better resembles the smooth shades of the original image. However, smoothness of inten-
sity variations in IAT is achieved at the expense of sharp edges. In comparison Is exhibits
much less blurring while still preserving edges. For reasons identical to those stated in the
case of Chambolle edges we refrain from postprocessing the computed Ambrosio–Tortorelli
phase function ψε to make it comparable to χ. We rather examine it in contrast to the
fuzzy edge map Ẽ. Thus for better legibility Figure 6.2 does not show ψε but 1−ψε such
that edges appear as bright lines. As opposed to the Ambrosio–Tortorelli reconstruction
ψε does not exhibit any obvious blurring. However, since IAT suffers from smoothing the
phase function has very weak edges as darker nonzero regions of IAT fade into the back-
ground. In contrast Ẽ shows much more pronounced edges in these areas (especially in
the upper left corner of the image).
For assessing the quality of χ we first compare it also to a binary edge map computed by
Canny’s edge detector. Figure 6.3 shows Canny edge maps of the same noise corrupted
artificial image with and without preprocessing the raw image (Panels (b) and (a) respec-
tively). Note that both edge maps were obtained by MATLAB’s Canny edge detector
using automatic thresholding. The result computed without any preprocessing shown in
Panel (a) clearly suffers from pronounced noise artifacts. Applying Canny’s edge detector
to the TV denoised image seen in Panel (c) of Figure 2.9 (for ν = 0.4) improves the quality
of the edge map but manifests staircasing artifacts (Panel (b)). In contrast, edges seen in
χ computed by Algorithm 5.1 are straight lines that show almost no noise corruption at
all. Furthermore, the depicted result was obtained without using any preprocessing strat-
egy for the raw image. Additionally, contrary to Canny’s edge detector, Algorithm 5.1 is
quite robust with respect to the choice of β and δ.
To further elucidate the behavior of our approach we return again to the Canny edge maps
of the clean artificial image shown in Figure 2.4. Note carefully that even in the noise free
case small variations in the threshold τ cause significant changes in the computed edge
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(a) (b)

Figure 6.3: Canny edge maps of the artificial image corrupted by 5% additive Gaussian white noise
depicted in Figure 2.8. Panel (a) shows a Canny edge map of the raw image without any
preprocessing, Panel (b) depicts the result of Canny’s detector applied to the TV denoised
image seen in Panel (c) of Figure 2.9.

(a) (b)

Figure 6.4: An artificial image that smoothly fades into the background represented as a gray scale
map (a) and as a surface (b).
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6.2 The Noisy Artificial Image

(a) (b) (c)

Figure 6.5: Edge maps of the artificial image depicted in Panel (a) of Figure 6.4. Shown are Canny
edge maps obtained by using MATLAB’s automatic thresholding (a) and by choosing
the threshold value manually (b). Note that the difference in threshold values that yield
the edge maps of Panel (a) and (b) is of the order of less than one tenth of a percent.
Panel (c) shows an edge map computed by Algorithm 5.1 using β = 2.5e3, δ = 0.1 and
ϑ = 1.

maps. Apparently, smooth intensity variations in the raw image prove to be challenging
for Canny’s edge detector. We analyze this phenomenon in more detail by considering the
image depicted in Panel (a) of Figure 6.4. Note that the left side of this shaded square
smoothly fades into the background which is further illustrated in the surface plot seen in
Panel (b) of the same Figure. Hence the left edge of this image does not correspond to a
jump but rather a sharp bend in the surface plot.
This particular kind of edge may pose problems for formulations that are solely based on
locally maximizing the gradient magnitude, such as Canny’s edge detector. Panels (a) and
(b) of Figure 6.5 show Canny edge maps of the image depicted in Panel (a) of Figure 6.4
for different threshold values. In comparison Panel (c) of the same Figure shows an edge
map computed by Algorithm 5.1. Note that the transition from the edge map seen in
Panel (a) to the one depicted in Panel (b) was achieved by a variation in the threshold
value of the order of less than one tenth of a percent. In contrast the result obtained
by Algorithm 5.1 retains its appearance robustly with respect to β and δ. Further, in
numerous tests Canny’s detector was not able to recognize the left edge of the square.
However, note carefully that the left edge of the square is almost entirely visible in the
edge map computed by Algorithm 5.1. Preliminary results suggest that including second
order information of the smooth image Is in the computation of the fuzzy edge map Ẽ may
further improve results in the presence of such edges. For instance it could be observed
that extending Algorithm 5.1 in this manner allowed for the detection of the entire left
edge of the particular image discussed here. A thorough investigation of such an extension
may be an interesting topic for future work.
Finally we evaluate χ with respect to a K-Means segmentation. We want to obtain the
best possible edges for the corrupted artificial image considered. In other words we want
to discriminate back- and foreground of the image. Thus a natural choice of desired
segments in the K-Means algorithm is K = 2. Figure 2.7 (h) and (i) shows the computed
K-Means segments for the noisy artificial image. As briefly addressed in Section 2.3
K-Means clustering is obviously very prone to noise. A closer look at the underlying
iterative strategy of the K-Means approach reveals the cause of its poor performance
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Figure 6.6: Result of Algorithm 5.1 for an artificial image using χ = 0 as initialization and the
parameter values β = 5, δ = 0.2 and ϑ = 1.

straightaway. The mean value computations in the Update Step are very sensitive to
outliers, i.e., pixels of differing intensity. Thus the computed means are inaccurate which
deteriorates the segments calculated in the Assignment Step. In addition, the lack of
any penalization with respect to regularity of segments leads to excessive fragmentation
(compare Panel (h) of the same Figure). As mentioned above, results can be improved
though by using preprocessing techniques. However, K-Means clustering fundamentally
relies on the assumption of piecewise constancy of the raw image. Thus, even in the noise
free case a satisfactory segmentation could not be obtained (compare Panels (b) and (e)
of the same Figure).
Note however, that K-Means clustering plays an important role in this work as it used
to compute an initial guess for χ in Algorithm 5.1. Thus the next Section is devoted to
analyzing the behavior of the developed approach with respect to different initializations
for the binary edge map.

6.3 Initializing the Binary Edge Map

For the sake of simplicity we focus again on the noise free artificial image shown in Fig-
ure 2.2. For all simulations we used tolin = tolout = 1.0e − 2, kmax

out = 5 and kmax
in = 20

unless explicitly stated otherwise. We start by discussing the case of using no initial guess
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for χ at all, i.e., we set χ = 0 at the beginning of Algorithm 5.1. Note that δ > 0 guaran-
tees that the variational problems (5.4), (5.11) and (5.13) are still well posed. Figure 6.6
shows the computed binary edge map χ. Note that for the sake of better comparability
the same parameter values as for the result shown in Figure 3.5 have been used. Obviously
the difference to χ computed using K-Means clustering as initial guess is minuscule. Thus
one may be tempted not to rely on any initial guess for χ at all. However, numerous tests
showed that especially for more realistic images K-Means initialization can improve con-
vergence of Algorithm 5.1. For instance the clean artificial image discussed here required
one additional step in the very first run of the Inner Iteration when using χ = 0 as initial
guess. Moreover, under certain circumstances the initialization χ = 0 may bring about
the need to adapt the edge thickness parameter ϑ. For instance, a large value of β in
connection with a too small ϑ may give χ = 0 in the first step of the Inner iteration which
causes trivial convergence. Hence K-Means clustering is employed as default initialization.
However, we want to emphasize that convergence of Algorithm 5.1 does not rely upon it.
Another natural choice for initializing χ is using a Canny edge map. Starting Algo-
rithm 5.1 with the Canny edges depicted in Panels (b) and (c) of Figure 2.4 yields results
that are visually identical to the one depicted in Figure 3.5. Compared to the K-Means
initialization one additional step in the first run of the Outer Iteration is required for the
edge map corresponding to τ = 0.04. For τ = 0.05 the Canny edges are already of very
high quality and thus do not need much refinement. Nevertheless, this result confirms
the robustness of Algorithm 5.1. A good start accelerates convergence but leads to (vi-
sually) the same result. However, the severe drawback of Canny’s edge detector remains.
The threshold τ has to be carefully calibrated for each image. In contrast, K-Means
clustering may yield poorer results than a fine tuned Canny edge map. Nonetheless, the
K-Means approach requires much less maintenance. In fact, using K = 2 provides accept-
able initializations in most cases whereas Canny edge maps tend to severely deteriorate if
τ is chosen inappropriately. Since a poor Canny edge map may not prevent convergence
but potentially slows down Algorithm 5.1 we decided to initialize χ by employing K-Means
clustering.
Note that not only χ may be initialized in various ways. It is of course also possible
to employ different strategies for computing Is and thus Ẽ. Recall our investigation of
the Ambrosio–Tortorelli approach with respect to results obtained by Algorithm 5.1. We
compared the Ambrosio–Tortorelli phase function ψε with the computed fuzzy edge map
Ẽ. Thus a natural question is: what happens if we set Ẽ = 1 − ψε in Algorithm 5.1?
Thus we set kmax

out = 1 since Ẽ is not updated using χ computed in the Inner Iteration.
Further, we start with χ = 0 so that the behavior of the Inner Iteration can be observed
without potential interference of a particularly good or bad initialization. Note that the
quality of such a mixed strategy crucially relies on suitable parameter values for JAT given
by (2.10). If α, κ and ε are chosen appropriately then χ is visually identical to the edge
map seen in Figure 3.5. However, very weak edges in ψε can make the fuzzy edge map Ẽ
rather ”flat” in some regions. This causes the back- and foreground image to be almost
identical in areas around weak edges which may impair the computation of χ in the Inner
Iteration. Thus the benefit of such an approach is indistinguishable at the moment; not
only because of the introduction of three new parameters via JAT but also due to the much
higher computational effort required to minimize JAT in contrast to solving (4.63). Note
that setting Is = IAT and Ẽ = ∇Is = ∇IAT yields visually identical results but obviously
has the same drawbacks.
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(a) (b)

Figure 6.7: An edge map of a magnetic resonance image. Shown is the MR-image (a) and χ computed
by Algorithm 5.1 using β = 50, δ = 0.8 and ϑ = 1 (b).

Another idea that has been tested is to use a TV-denoised approximation ITV in Algo-
rithm 5.1. In detail, we set Is = ITV and Ẽ = ∇ITV. For piecewise constant images this
approach provides a valid initial guess for the first binary edge map computed in the Inner
Iteration. However, in the case of images that manifest smooth intensity variations, like
the artificial image discussed here, ITV typically suffers from staircasing artifacts. Since
pronounced staircasing is reflected in Ẽ as well, convergence of the Inner Iteration may
be impaired. Furthermore, TV denoising introduces a new parameter ν that has to be
reasonably adjusted for each image. In contrast, Is depends on the same parameters β and
δ that are also used in the Inner Iteration. Moreover, the smooth image Is was explicitly
designed to overcome the assumption of piecewise constancy of the raw data.
In general it is of course possible to refine results obtained by Algorithm 5.1 by applying
adequate preprocessing strategies to the raw image Ĩ. However, it is beyond the scope
of this work to present a detailed review of modern image enhancement and restoration
strategies. We refer the interested reader to [CS05] or [AK06].

6.4 Biomedical Applications

Having reviewed the behavior of Algorithm 5.1 using an artificial image we now focus on
the applications that originally motivated the specific design of the presented approach.
For all results in this section the default settings tolin = tolout = 1.0e − 2, kmax

out = 5
and kmax

in = 20 have been used. We start by considering a member of a sequence of
dynamic contrast enhanced magnetic resonance images (DCE-MRIs) of a human torso
as depicted in Panel (a) of Figure 6.7. In contrast to the artificial data used so far the
MR-image manifests many small intertwined structures and fine textures. Moreover, the
image is clearly not piecewise constant and exhibits large local intensity variations due
to the presence of contrast agent. Panel (b) of the same Figure shows the edge map
that was computed by Algorithm 5.1 in two Outer Iterations (comprising of first three
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(a) (b)

Figure 6.8: An edge map of a microscopic image. Shown is the raw photomicrograph (a) and χ
computed by Algorithm 5.1 using β = 5e3, δ = 0.01 and ϑ = 1 (b).

then one Inner Iterations to reach convergence). By using slightly increased values for
β and δ the presented approach is capable of outlining major objects like the liver while
not cluttering the edge map with many small details. Simultaneously Algorithm 5.1 is
sensitive enough to capture fine details like physiological structures inside the kidneys
that are highlighted by contrast agent. By comparison, Figure 2.13 shows an Ambrosio–
Tortorelli phase function for the same image before and after thresholding. Observe that
edges that are particularly pronounced in χ appear as multi-layered lines in the thresholded
phase function. Moreover, organ contours as well as smaller details like the interior of the
kidneys are hardly distinguishable. Note that the thresholding result might be improved
by exhaustive parameter testing since slight variations in the threshold cause significant
changes in the edge map. Similarly, a Canny edge map may yield satisfactory results but
requires extensive fine tuning of the threshold. Conversely, Algorithm 5.1 proves again its
stability with respect to β and δ; varying β by ±10 and δ by ±0.1 has no visible influence
on the result.
To illustrate the role of the edge thickness parameter ϑ in practice consider Panel (a) of
Figure 6.8. Shown is a microscopic image of cancer cells in a petri dish. From an image
processing point of view this photomicrograph poses similar challenges as the MR-image
discussed above. A chemical agent causes cancerous cells to illuminate while healthy cells
show no or little response. Thus the image also exhibits large local intensity variations
and consists of many fine grained structures. An additional challenge is the presence of
background noise. Though the image looks rather clean it is in fact corrupted by noise
that is roughly of the order of poorly illuminated cells. This makes a clear separation
of cell nuclei from the background difficult. To account for the noise corruption we thus
significantly increased β such that Is and hence Ẽ become sufficiently smooth. However,
to avoid losing fine structures within cells we simultaneously decreased δ. This lowers
the value of βδ and hence avoids oversmoothing on edges (i.e., where χ = 0) such that
intracellular details are preserved. Panel (b) of Figure 6.8 shows the computed edge map
for ϑ = 1. Note that indeed cell nuclei are outlined by pronounced edges and thus clearly
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(a) (b)

Figure 6.9: Illustration of the role of ϑ. Shown is χ computed by Algorithm 5.1 for the microscopic
image depicted in Panel (a) of Figure 6.8 using ϑ = 0.5 (a) and ϑ = 0.25 (b) with
β = 5e3 and δ = 0.01.

visible in χ. In contrast the edge maps seen in Figure 6.9 computed using ϑ = 0.5 and
ϑ = 0.25 exhibit considerably finer lines. Depending on the requirements of the specific
application Algorithm 5.1 is thus capable of generating edges of various strengths. Note
carefully, however, that the particular topological structure of the computed edges is not
altered by the decrease in ϑ. In fact, for ϑ→ 0 the computed edge maps show a behavior
analogous to Ambrosio–Tortorelli phase functions as ε → 0. It is not within the scope of
this work to perform a rigorous mathematical investigation of this limiting phenomenon
but an asymptotic analysis of the presented approach for ϑ→ 0 may be rewarding.
The next chapter is devoted to a brief introduction to image registration. It will be
demonstrated that the developed approach for the computation of binary edge maps lends
itself handily to be embedded in an iterative registration strategy specifically tailored for
image sequences that prove to be challenging for classic registration techniques.
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7
The Image Registration Problem

A common problem in image processing is to combine data from various sources to generate
an image or to enhance an existing image’s quality. In astronomy, for instance, one often
wants to assemble multiple color channels and/or wavelengths to visualize measurements
obtained by space telescopes. A common task in medical imaging consists of comparing
patient data before and after treatment. State of the art surgery planing involves incorpo-
rating data from different sources, e.g., magnetic resonance and computerized tomography
imaging [FHM00, Chap. 8]. All these applications require the computation of an explicit
coordinate transform between points of one image and their corresponding counterparts
in the other. This task is called image registration.
The methods used to solve registration problems are as diverse as the underlying applica-
tions. A possible classification may be imposed by categorizing techniques based on the
kind of transformation that is computed and on the notion of image similarity used. An
exhaustive review of modern techniques in image registration is given in [Mod04]. In the
following we will focus on registration approaches used in the context of this work.
The objective of this chapter is to develop a strategy for the robust and efficient registration
of edges. More specifically, we want to embed the approach introduced in Chapter 3 in
an image registration framework. Of particular interest will be sequential image data
exhibiting pronounced intensity variations, e.g. magnetic resonance images in the presence
of contrast agent, since these settings prove to be challenging for standard intensity based
registration schemes. Nevertheless, the development of the registration strategy presented
below was driven by an application coming from biophysics [FKPP11].

7.1 Image Similarity

We start by introducing terminology commonly used in the context of image registration.
Let again Ω := (0, 1)2 denote the image domain and let I0 and I1 be two images on
Ω. The simplest way to formulate a registration problem is to find a displacement field
w : R2 → R2 such that I0(x+w(x)) ≈ I1(x) for all x ∈ Ω. In this context we refer to I0

as the template or the moving image whereas I1 is the so-called reference or fixed image.
Thus, in words, the task is to find a vector field w that deforms the template I0 in such a
way that I0 ◦ (id +w) is close to the reference I1. Obviously, we have to clarify what we
mean by ”close” in this context, i.e., we have to specify an appropriate similarity measure.
The choice of a suitable notion of image similarity depends solely upon the registration
problem at hand. Recall that the objective was to register edge maps. Thus let χ0 and χ1

denote the template and reference edge maps, respectively, and define Γi := supp(χi) for
i = 0, 1. Thus Γ0 and Γ1 are two-dimensional curves in Ω. Note that in contrast to previous
chapters χi = 1 only on Γi whereas before χ = 1 everywhere excluding edges. We assume
that both curves have finite length, i.e., the Hausdorff measure H(Γi) is finite. While this
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(a) (b) (c)

Figure 7.1: The effect of ε in (7.3). Shown is an artificial edge map (a) and its blurred versions
according to (7.3) for progressively larger values of ε (b) and (c).

may look like a simplification, H(Γi) <∞ introduces the concept of zero measure sets in
a registration setting. This has a fundamental impact on choosing an applicable similarity
measure. Consider for instance the sum of squared intensity differences (SSID) which is
one of the most widely used similarity measures [FHM00, Chap. 8]. In our notation it
takes the form

(7.1)
1

2

ˆ
Ω
|χ0 ◦ (id +w)− χ1|2 dx,

for which we make the following crucial observation. Since Γi := supp(χi) and H(Γi) <∞
the sets Γi have measure zero |Γi| = 0. Thus the trivial deformation w = 0 minimizes
(7.1) for any χ0 and χ1. This renders the SSID measure (7.1) useless in this context. Thus
one may consider an approach tailored specifically to quantify difference of edges such as
the Hausdorff distance. Hence consider

(7.2) dH(Γ0,Γ1) := max

(
sup
x∈Γ0

dΓ1(x), sup
x∈Γ1

dΓ0(x)

)
,

with dΓi(x) = infy∈Γi |x− y| . Usage of the Hausdorff distance has a long tradition in
computer graphics and image processing in general [HKR93]. It is commonly employed
in the context of shape recognition tasks, e.g., face detection [JKF01]. Nevertheless, the
Hausdorff distance has also been successfully applied in image registration. However, the
downside of using (7.2) is its computational complexity (see, e.g., [FJSY09]) which is
sometimes counteracted by imposing explicit restrictions on the computed deformation
field [KKS09]. On the other hand, extended formulations such as the one presented in
[DR06] require sufficient regularity of the problem which cannot be guaranteed here.
The approach developed in [FKPP10] was guided by the idea of enhancing the SSID
measure (7.1) in a way that mimics some intrinsic features of (7.2) to obtain a similarity
measure that is not only applicable to edge maps but also computationally efficient. Thus
we adopt the idea of Ambrosio–Tortorelli phase functions discussed in Section 2.5 and
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define

(7.3) χεi (x) :=

{
1− dΓi(x)/ε, if dΓi(x) ≤ ε,
0, otherwise,

for i = 0, 1,

where ε > 0 is a blurring parameter. Note the similarity of this definition to (2.7). Hence
χεi is one on Γi and smoothly decreases to zero off Γi. Thus χεi is supported on a band
of width 2ε around Γi. That means (7.3) extends the support of χi depending on the
magnitude of ε. Observe carefully that now |supp(χεi )| > 0, which thus permits the use
of the SSID measure. Hence we introduce the following distance measure for blurred edge
maps

(7.4) Sε[w] :=
1

2

ˆ
Ω
|χε0 ◦ (id +w)− χε1|

2 dx.

Several important observations should be made at this point. First, the term ”blurring
parameter” for ε is indeed justified as depicted by Figure 7.1 which illustrates the effect of
(7.3). Note that the technique used to obtain χεi can be seen as a distance transform which
is a well known tool in image processing (see, e.g., [Jai89]). Several authors have used
distance transforms in the context of image registration, e.g., [HB06] employed constrained
distances whereas [PRR02] developed a variational approach to match distance functions.
Note further that the striking similarity between (7.3) and (7.2) is the distance function
dΓi . Thus (7.3), just like (7.2), is potentially expensive to compute. Hence in practice (7.3)
is calculated via a marching scheme based on successive discrete convolutions. Section 8.2
addresses in further detail the relation between the Hausdorff distance and Sε.

7.2 Elastic Deformations

In addition to determining a suitable similarity measure, choosing an appropriate class of
feasible deformations has a fundamental impact on the performance of the registration.
Based on this choice one either refers to parametric or non-parametric image registration
[Mod04]. In parametric registration explicit restrictions on the desired deformation are
imposed. Thus for instance one is only interested in affine linear transformations, i.e., one
looks for deformations fields w of the form w = Ax + b with some matrix A ∈ R2×2

satisfying det(A) > 0 and b ∈ R2. A special case of affine linear transformations are
so-called rigid transformations satisfying w = Wx+ b where W ∈ R2×2 is an orthogonal
matrix. The name rigid refers to the fact that these transformations are solely composed
of rotations and translations. Note that non-parametric techniques are usually computa-
tionally very efficient; however, narrowing down the degrees of freedom for w may impair
the quality of the registration significantly. In the case of an affine linear registration, for
instance, every point x in the image is registered by the same mapping rule Ax+ b. This
makes it impossible to align only small local features while leaving the rest of the images
unchanged.
Thus deformation fields obtained by a non-parametric registration approach will be of
primary interest in the following. We will utilize techniques from continuum mechan-
ics to deduce an energy functional that is minimized by a certain class of deforma-
tions. The subsequent derivation follows the presentation given in [KR05]. We introduce
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Figure 7.2: Sketch of the image cube Q illustrating the continuum mechanical setup.

the ”image cube” Q := Ω× (0, 1) ⊂ R3 thus

Q =
{

(x, y, z) ∈ R3 |0 < x, y, z < 1
}
.

Returning to the notation from above let I0 and I1 denote again the template and reference
image respectively. Suppose I0 and I1 are placed on the front and back face of Q denoted
by Ω0 and Ω1 in this context. Figure 7.2 shows a sketch. We use the surfaces depicted in
said Figure to introduce an alternative coordinate system. Let ξ := (ξ1, ξ2) be curvilinear
coordinates such that all but one component are constant along the shown surfaces. The
intersection of the surfaces forms a trajectory connecting a point in the template image I0

to its counterpart in the reference image I1. We parameterize such trajectories through
Q according to ζ = z. Hence (x, y, z) refers to a spatial or Eulerian coordinate system
whereas (ξ1, ξ2, ζ) are Lagrangian coordinates (for an introduction to these concepts see,
e.g., [Mes06]). With x = (x, y) we initialize ξ(x, 0) = x such that displacements in Q are
given by d(x, z) = x−ξ(x, z). Consequently, trajectories originating in Ω0 can be written
as x(ξ, ζ). Note that in general not every point Ω0 has a corresponding point in Ω1. Thus
we introduce

Ωc
0 := {ξ ∈ Ω0 |x(ξ, ζ) ∈ Q, ∀ζ ∈ (0, 1)} ,

to denote the subset of Ω0 that consists of points that find like counterparts in Ω1.
We make the assumption that the reference image is the result of an elastic deformation
acting on the template image. In continuum mechanics a very popular tool to characterize
the strain occurring in a body under an elastic deformation is the so-called right Cauchy–
Green strain tensor [Cia88]

C(ζ) := ∇ξx>∇ξx.

Note that deforming a body means to change distances between particle pairs in the body
and thus to alter the body’s form. A rigid body motion, on the other hand, induces a
uniform displacement of all particles albeit not affecting the particles’ mutual distances.
This is reflected by the fact that C(ζ) = I for rigid body motions, where I denotes the
identity matrix. Thus the Green–St.Venant strain E := 1

2(C− I) quantifies the deviation
of a deformation from rigidity. Using this strain, an expression for the elastic potential
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energy in a body can be derived [Cia88]

(7.5) W [E] =

ˆ
Ωc

0

λtr(E)2 + 2µ |E|2 dξ,

where tr(E) denotes the trace of E and λ, µ > 0 are the so-called Navier–Lamé constants
quantifying a body’s elastic properties. Sometimes µ is also called shear modulus and λ is
referred to as bulk modulus. Note that the shear term 2µ |E|2 = 2E : E makes W (E) non-
linear and thus potentially expensive to compute in practice. Thus using the introduced
expression for internal displacements in Q we linearize the Green–St.Venant strain

2E = C − I = ∇ξd+∇ξd> +∇ξd>∇ξd ≈ ∇ξd+∇ξd>,

and thus obtain the following approximation

(7.6) W [E] ≈
ˆ

Ωc
0

λ (∇ξ · d)2 +
µ

2

∣∣∣∇ξd> +∇ξd
∣∣∣2 dξ.

Hence we obtain the linearized elastic potential of w

(7.7) P [w] :=
1

2

ˆ
Ω
λ (∇ ·w)2 + µ

∣∣∣∇w> +∇w
∣∣∣2 dx.

The procedure of minimizing a linear combination of some similarity measure and P is
called elastic registration which will be the method of choice in this work.
Elastic registration has been used by many authors, e.g., [PSRS99] or [KR05], and has
proven to be a reliable technique in medical imaging applications. Note carefully, however,
that (7.6), as being a linearization of (7.5), can only be expected to approximate (7.5)
for relatively modest deformations. Hence P implicitly relies on the assumption that w
induces only small changes. Thus the use of elastic registration may not be adequate
if template and reference image vary significantly. Nevertheless, an elastic penalizer has
been used in [FKPP10] to register blurred edge maps arising from cuts through three
dimensional heart models. Thus it could not always be guaranteed that deviations in the
template and reference image were sufficiently small. However, the obtained results were of
very high quality and the employed strategy proved to be quite robust and reliable. Hence
the approach was also used outside the specific application for which it was originally
designed.

7.3 An Optimization Problem

Having selected a similarity measure (7.1) and a desired class of deformations (7.7) we can
now set up a cost functional

Jεreg[w] :=Sε[w] + P [w]

=
1

2

ˆ
Ω
|χε0 ◦ (id +w)− χε1|

2 + λ (∇ ·w)2 + µ
∣∣∣∇w> +∇w

∣∣∣2 dx,(7.8)
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(a) (b)

Figure 7.3: A one-dimensional registration problem. (a) The problem setup (b) Surface plot of Ĵ (ε, α)
for 0 ≤ ε ≤ 1

4
and 0 ≤ α ≤ 2 with µ = 1

4
.

for some fixed ε > 0. Thus elastically registering χ0 to χ1 means in our setting to solve
the minimization problem

(7.9) inf
w
Jεreg[w].

Similar to the presentation given in Chapter 3 we start by discussing properties of (7.8)
first and address mathematical details later in Chapter 8. Note that (7.9) is a stand alone
minimization problem for every ε > 0. Thus (7.9) can also be seen as a family of optimiza-
tion problems depending on ε. Hence besides discussing the existence of solutions to (7.9)
for fixed ε an obvious question concerns the behavior of solutions as ε gets progressively
smaller. The following one-dimensional considerations (following [FKPP10]) may shed
some light on the intrinsic features of (7.9) as ε→ 0.
Assume for now that Ω = (0, 1) ⊂ R and let

χ0(x) :=

{
1, x = 1

4 ,

0, otherwise,
and χ1(x) :=

{
1, x = 1

2 ,

0, otherwise.

Similar to the two dimensional problem discussed above we want to elastically register χ0

to χ1. Thus we introduce the following cost functional

Ĵ [w] := Ŝ[w] + µP̂ [w],

with

Ŝ[w] :=

ˆ 1

0
|χ0 ◦ (id + w)− χ1|2 dx,

and

P̂ [w] :=

ˆ 1

0

∣∣w′(x)
∣∣2 dx,

where µ is a regularization parameter (playing the role of both Navier–Lameé constants
in one dimension). Note that also in this one-dimensional setting both χ0 and χ1 are
only supported on sets of measure zero (on single points). Hence Ŝ[0] = 0, meaning that
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again the trivial deformation w = 0 is an (unwanted) minimizer. Thus following the above
presented strategy we introduce

χε0(x) :=

{
1, 1

4 ≤ x ≤
1
4 + ε,

0, otherwise,
and χε1(x) :=

{
1, 1

2 ≤ x ≤
1
2 + 2ε,

0, otherwise,
for 0 < ε ≤ 1

4
,

in analogy to (7.3). Figure 7.3 depicts a sketch. We similarly update the cost functional
to be

Ĵε[w] := Ŝε[w] + µP̂ [w],

with

Ŝε[w] :=

ˆ 1

0
|χε0 ◦ (id + w)− χε1|

2 dx.

Due to the plain structure of this problem we can determine the form of wanted deforma-
tions a priori. Looking at Figure 7.3(a) the deformation we are looking for is obviously
given by w?(x) := x. Thus we may narrow down the problem to minimizing Ĵε under the
constraint that wα = αx with α ∈ R and some fixed 0 < ε ≤ 1

4 . For deformations of this
form the penalizer may be computed explicitly

P̂ [wα] =

ˆ 1

0
|α|2 dx = α2,

which immediately yields

(7.10) P̂ [0] = 0 and P̂ [w?] = 1.

We can analogously derive an explicit expression for the similarity measure at w = 0.
Thus suppose α satisfies

(7.11) (1 + α)(
1

4
+ ε) ≤ 1

2
,

which means the support of χε0 ◦ (id +wα) remains to the left of the support of χε1. Then

Ŝε[wα] =

ˆ 1

0
|χε0(x+ αx)− χε1(x)|2 dx

=(1 + α)

((
1

4
+ ε− 1

4

)
+

(
1

2
+ 2ε− 1

2

))
=(α+ 3)ε.

Since 0 < ε ≤ 1
4 , (7.11) holds for α = 0 which thus implies

(7.12) Ŝε[0] = 3ε.

On the other hand, for w? we have α = 1. Hence suppose 1
2 < (1 + α)(1

4 + ε) ≤ 1
2 + 2ε,

i.e., the support of χε0 ◦ (id + wα) remains inside the support of χε1. Then

Ŝε[wα] =

(
1

2
− (1 + α)

1

4

)
+

(
1

2
+ 2ε− (1 + α)(

1

4
+ ε)

)
=

1

2
(1− α)(1 + 2ε),
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7 The Image Registration Problem

which implies for α = 1 that

(7.13) Ŝε[w?] = 0.

Thus for

(7.14) ε < min

{
1

4
,
µ

3

}
,

combining (7.10), (7.12) and (7.13) gives

Ĵε[0] = Ŝε[0] + µP̂ [0] =3ε+ µ · 0

<3
µ

3

=Ŝε[w?] + µP̂ [w?] = Ĵε[w?],

(7.15)

which means that the trivial deformation yields a lower cost than the wanted displacement
despite the fact that ε > 0. This observation is of fundamental importance for the devel-
opment of a robust registration strategy since it is not a peculiarity of the one-dimensional
setting. Consequently, this phenomenon motivated the design of an iterative registration
approach that avoids the computation of trivial deformations as ε gets smaller. We explain
the developed method by thoroughly investigating the presented example.
What led to the unwanted result above was the special choice of ε in (7.14). Inequality
(7.15) only holds since ε was small enough compared to the regularization parameter µ.
Thus the ”right” choice of ε depends on the value of the regularization parameters. To
illustrate this concept let Ĵ (ε, α) := Ĵε(αx) with µ = 1

4 . Figure 7.3 shows Ĵ (ε, α) for

ε ∈ [0, 1
4 ] and α ∈ [0, 2]. Note that Ĵε is minimized by the wanted deformation w? for

sufficiently large values of ε while α = 0 and thus the trivial deformation is a minimizer for
small ε. Hence choosing ε large may seem like a possible remedy to this problem. However,
large values of ε induce heavy blurring in the edge maps (compare Figure 7.1) and thus
may ”wash out” local details in the curves Γi thereby possibly impairing the outcome of
the registration. However, a deformation computed for such a large ε may still be a valid
initial guess for a registration. Thus we start by computing the global minimizer of Ĵε for
a sufficiently large ε. We use the calculated ”rough” deformation field as initialization for
the registration with a smaller ε. The updated deformation field is used as initial guess
for the registration with an even smaller ε and so forth. Since the very first deformation
was computed for some large ε, this iterative procedure guarantees that solutions do not
become trivial as ε→ 0. In the language of optimization we start by looking for the global
minimum of Ĵε but favor local minimizers as ε gets smaller. Algorithm 9.1 presents a
comprehensive pseudo-code that illustrates this strategy and addresses practical details
like stopping criteria, the discretization used and specifics of the implementation.
The next chapter is devoted to the mathematical analysis of the presented approach and
sets up the optimization framework that is used in practice.
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8
Analysis of The Registration Approach

We concluded the previous chapter by studying a one-dimensional problem that served
as an object lesson for sketching an iterative registration strategy for edge maps. In the
following we present a more rigorous discussion of the minimization problems which illus-
trates from an analytical point of view the reasoning behind the developed approach. We
establish a common ground for the discussion below by making the following supposition.

Assumption 9. Let Ω := (0, 1)2, χε0 ∈ W 1,∞(R2) and χε1 ∈ L∞(Ω) with ε > 0 fixed.
Further, let λ > 0 and µ > 0.

Note that the condition on χε0 may seem like a strong regularity requirement. However,
provided the curve Γ0 is smooth enough, χε0 satisfies Assumption 9 automatically. The
distance functions dΓi appearing in the Definition (7.3) of χεi are Lipschitz continuous with
Lipschitz constant one [Zaj83, Sec. 3]. If Γ0 is sufficiently regular then χε0 has an essentially
bounded weak derivative a.e. in Ω which is inherited from dΓ0 . This is a consequence of
Rademacher’s Theorem [Eva08, Sec. 5.8, Th. 6] that states that a Lipschitz function is
differentiable almost everywhere. Then by extending χε0 by zero outside of Ω we get
χε0 ∈W 1,∞(R2). Note further that this implies that χε0 is Lipschitz continuous on R2 (see
Part 1 of the proof of Theorem 4 in [Eva08, Sec. 5.8.2.b]).
The results stated below have been presented first in [FKPP10]. Thus we only provide the
general idea of argumentation and refer the reader to [FKPP10] for details. Similarly, Sec-
tion 8.2 addresses the relation between Sε and the Hausdorff distance (7.2) by discussing
results previously published in [CFK04].

8.1 Existence of Solutions to the Registration Problem

We start by stating (7.9) more precisely. With a view to Jεreg given by (7.8) the natural
space for minimizing this functional is H1(Ω). Thus we rewrite (7.9) in more detail

(8.1) min
w∈H1(Ω)

Jεreg[w], for ε > 0.

First we want to guarantee that this problem has a solution, i.e., the use of min instead
of inf is indeed justified. A standard way to prove existence of a solution to an infinite
dimensional minimization problem is the so-called direct method of the calculus of vari-
ations (see for instance [AK06, Sec. 2.1]). In the present context it may be summarized
as follows. Since Jεreg[w] > 0 for every w ∈ H1(Ω) and there exists some w such that
Jεreg[w] <∞, e.g., w = 0, the infimum inf Jεreg[w] on H1(Ω) is finite. In other words Jεreg

is bounded from below. Thus there exists a minimizing sequence {wk}k≥1 ⊂ H1(Ω) such
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8 Analysis of The Registration Approach

that

(8.2) lim
k→∞

Jεreg[wk] = inf
w∈H1(Ω)

Jεreg[w].

Assume Jεreg is coercive on H1(Ω), i.e.,

Jεreg[w] ≥ α ‖w‖2H1(Ω) , ∀w ∈ H1(Ω),

for some α > 0 then {wk}k≥1 is bounded inH1(Ω). SinceH1(Ω) is reflexive this implies the
existence of a subsequence {wkl}l≥1 of {wk}k≥1 that converges weakly in H1(Ω) to some
w∗ ∈ H1(Ω) (compare Appendix B.2). Suppose further that Jεreg is lower semicontinuous,
i.e., lim infk→∞ J

ε
reg[zk] ≥ Jεreg[z∗] for any sequence {zk}k≥1 ⊂ H1(Ω) converging (weakly

or strongly) to z∗. Then (8.2) yields

inf
w∈H1(Ω)

Jεreg[w] = lim
k→∞

Jεreg[wk] = lim
l→∞

Jεreg[wkl ] ≥ J
ε
reg[w∗] ≥ inf

w∈H1(Ω)
Jεreg[w],

or equivalently Jεreg[w∗] = minw∈H1(Ω) J
ε
reg[w]. Thus if we can show coercivity and lower

semicontinuity of Jεreg, existence of a solution to (8.1) is readily established. However, the
following considerations show that Jεreg is not coercive on H1(Ω). Let

RM(Ω) :=
{
w = Wx+ c

∣∣W ∈ S2, c ∈ R2,x ∈ Ω
}
,

denote the space of infinitesimal rigid motions where

S2 :=
{
W ∈ R2×2

∣∣∣W +W> = 0
}
,

is the space of skew symmetric matrices. Note that W is orthogonal for rigid motions
whereas W ∈ S2 for infinitesimal rigid motions. This comes from the fact that ev-
ery orthogonal matrix can be written as matrix exponential of a skew symmetric matrix
(compare, e.g., [GX02] and references therein) which is used in the theory of infinitesimal
rotations (for an overview see, e.g., [Mes06, Sec. 2.1.2]). For u ∈ RM(Ω) we obviously
have ∇u = W and thus P [u] = 0 since W is skew symmetric. Hence RM(Ω) is in the
kernel of the linear elastic potential energy P which implies

α ‖u‖H1(Ω) � Jεreg[u] = Sε[u] ≤ 2 |Ω| , ∀u ∈ RM(Ω) ⊂ H1(Ω).

Thus for any unbounded sequence {uk}k≥1 in RM(Ω), the similarity measure Sε remains

bounded by 2 |Ω| while ‖uk‖H1(Ω)
k→∞−→ ∞. Therefore Jεreg is not coercive on H1(Ω).

However, it can be shown that Jεreg is coercive on the orthogonal complement RM(Ω)⊥ of
RM(Ω). Lemma 1 in [FKPP10] demonstrates that

H(Ω) :=

{
w ∈ H1(Ω)

∣∣∣∣ˆ
Ω
w(x) dx = 0,

ˆ
Ω
w(x)x> − xw(x)> dx = 0

}
,

is an explicit representation of RM(Ω)⊥ and

(8.3) H1(Ω) = RM(Ω)⊕ H(Ω).
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This direct sum decomposition of H1(Ω) is crucial for showing well posedness of (8.1).
The heuristic idea is to split up the argumentation by considering the minimizations of
Jεreg on RM(Ω) and H(Ω) separately. Then, with the aid of (8.3), the combination of these
results implies the existence of a solution to (8.1).
The proofs of both results rely on two observations. First, by defining

〈v1,v2〉P :=
1

2

ˆ
Ω
λ(∇ · v1)(∇ · v2) + µ(∇v1 +∇v>1 ) : (∇v2 +∇v>2 ) dx,

for v1,v2 ∈ H(Ω) and setting

|v|P :=
√
〈v,v〉P , ∀v ∈ H(Ω),

one obtains that the linear elastic potential P defines an energy norm on H(Ω). It can be
shown that this energy norm is equivalent to the usual H1(Ω)-norm on H(Ω) [FKPP10,
Lem. 2].
Second, following the discussion below Assumption 9, χε0 is Lipschitz continuous on R2.
Thus there exists L > 0 such that

|χε0(x)− χε0(y)| ≤ L |x− y| , ∀x,y ∈ R2.

Then for all w1,w2 ∈ L2(Ω) we have

|Sε[w1]− Sε[w2]| ≤
ˆ

Ω

∣∣∣|χε0(x+w1(x))− χε1(x)|2 − |χε0(x+w2(x))− χε1(x)|2
∣∣∣ dx

≤2L

ˆ
Ω
|w1 −w2| dx ≤ 2L

√
|Ω| ‖w1 −w2‖L2(Ω) ,

and thus Sε is continuous on L2(Ω). Using equivalence of the norms |·|P and ‖·‖H1(Ω) on
H(Ω) and continuity of Sε it can be shown that there exists v∗ ∈ H(Ω) such that

(8.4) Jεreg[u+ v∗] = min
v∈H(Ω)

Jεreg[u+ v], ∀u ∈ RM(Ω),

compare [FKPP10, Lem. 5]. Thus the minimization of Jεreg on H(Ω) is well posed. Showing
a similar result on RM(Ω) proves to be technically very demanding and significantly more
complex. Since RM(Ω) is in the kernel of the penalizer P the claim involves solely the
similarity measure Sε. The basic idea is to show boundedness of some minimizing sequence
of Sε which then implies the existence of a subsequence converging to the minimizer. The
most difficult part of the proof is to establish a lower bound for Sε at the limit of the
subsequence. As soon as this is achieved, continuity of Sε implies that the limit is indeed
the wanted minimizer. In detail, the result states that if for a given w ∈ L2(Ω) there
exists c̃ ∈ R2 and W̃ ∈ S2 such that

ˆ
Ω

∣∣∣χε0(x+w(x) + c̃+ W̃x)− χε1(x)
∣∣∣2 dx < ˆ

Ω
|χε1(w)|2 dx,

then there exists c∗ ∈ R2 and W ∗ ∈ S2 such that

(8.5) Sε[w(x) + c∗ +W ∗x] = min
c∈R2,W∈S2

Sε[w(x) + c+Wx],
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8 Analysis of The Registration Approach

compare [FKPP10, Lem. 4]. Finally, existence of solutions to (8.1) is shown by combining
the two auxiliary results covering the existence of minimizing rigid motions and the mini-
mization of Jεreg on H(Ω). By (8.3), any w ∈ H1(Ω) can be written in terms of u ∈ RM(Ω)
and v ∈ H(Ω). Thus a minimizing sequence {w̃k}k≥1 ⊂ H1(Ω) of Jεreg is decomposed into
{uk}k≥1 ⊂ RM(Ω) and {ṽk}k≥1 ⊂ H(Ω). By (8.4), we set vk := arg minv∈H(Ω) J

ε
reg[uk+v].

Thus {wk}k≥1 defined by wk := uk +vk is also a minimizing sequence of Jεreg. Then (8.4)
and (8.5) is used to argue the existence of accumulation points u∗ ∈ RM(Ω) and v∗ ∈ H(Ω)
of {uk}k≥1 and {vk}k≥1 respectively. Finally w∗ := u∗ + v∗ can be shown to minimize
Jεreg.

Theorem 13. Given Assumption 9 the optimization problem (8.1) has a solution, i.e.,
there exists w∗ ∈ H1(Ω) such that

Jεreg[w
∗] = min

w∈H1(Ω)
Jεreg[w].

Proof. See the proof of Theorem 3 in [FKPP10].

Thus the minimization problem (8.1) is indeed well posed for every fixed ε > 0. However,
the developed strategy is based on successively decreasing ε to compute a registration.
Hence in the next section we address the behavior of solutions to (8.1) as ε→ 0.

8.2 Asymptotic Behavior of Solutions

First, observe that the blurred edge maps χεi converge pointwise to χi on Ω as ε → 0 for
i = 0, 1 [FKPP10, Lem. 6]. It can be shown that solutions to (8.1) stay ”bounded” in a
certain sense as ε → 0. As expected (compare the one-dimensional example discussed in
Section 7.3) projections of minimizers onto H(Ω) converge to zero with ε. The infinitesimal
rigid motion parts of minimizers, however, do not necessarily tend to zero, although the
value of the similarity measure does. Nonetheless, it can be proved that there exists some
fixed u0 ∈ RM(Ω) that has the same limiting property in Sε as the projections onto
RM(Ω). In other words, the projections onto RM(Ω) do not grow infinitely as ε→ 0.

Theorem 14. Given Assumption 9 let wε ∈ H1(Ω) be a solution to (8.1) for ε > 0
and denote by uε ∈ RM(Ω) and vε ∈ H(Ω) the projections of wε onto RM(Ω) and H(Ω)

respectively such that wε = uε + vε. Then vε
ε→0−→
H1(Ω)

0 and there exists u0 ∈ RM(Ω)

satisfying
lim
ε→0

Sε[u0 + vε] = lim
ε→0

Sε[uε + vε] = 0.

Proof. See the proof of Theorem 4 in [FKPP10].

Recall that the motivation for introducing the blurred edge maps χεi was to enable the use
of the SSID measure (7.1) despite the fact that the underlying edge sets have Lebesgue
measure zero. As mentioned above, the Hausdorff distance (7.2) on the other hand is
explicitly designed to measure differences in lower dimensional objects such as edges. This
raises the question quite naturally whether there is a relation connecting the Hausdorff
distance between Γ0 and Γ1 and the augmented SSID measure Sε of the respective blurred
edge maps χε0 and χε1. It turns out that the framework of shape analysis can be used to
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Figure 8.1: Two examples of admissible shapes. Any regular curve with curvature bounded from
above by 1

h0
and pinch distance (symbolized by arrows in the sketches) bounded from

below by h0 is in S. Shown is a closed (left) and an open curve (right). Sketches are
patterned on Figure 4 in [CFK04].

establish a convergence criterion. For the following we rely on techniques presented in
[CFK04]. We start by considering a set of smooth shapes. We introduce

C2 := {Γ ⊂ Ω |∂Γ 6= ∅ and ∂Γ can be locally represented

as an epigraph of a twice differentiable function} .

In other words the boundary of Γ ∈ C2 is a ”simple” regular curve. Nonetheless, shapes
in C2 may still bend and pinch arbitrarily. However, in order to establish limiting prop-
erties of shape sequences, additional regularity is required. Thus we further introduce
the h-tubular neighborhood of a shape Γ

Uh(Γ) := {y ∈ Ω |dΓ(y) < h} ,

for h > 0. Additionally, let

ΠΓ(x) :=
{
p ∈ Γ̄ ||p− x| = dΓ(x)

}
,

denote the set of projections of x ∈ Ω on Γ. Assume there exists h > 0 such that ΠΓ(x) is
a singleton for every x ∈ Uh(Γ). The maximal value for which this property holds is called
the reach of Γ, noted reach(Γ). For given fixed h0 > 0 we define Fh0 as the collection of
all sets with reach(Γ) ≥ h0, i.e.,

Fh0 := {Γ ⊂ Ω |reach(Γ) ≥ h0 } .

Now we can define the set S of all admissible shapes as

S := C2 ∩ Fh0 .

Thus S consists of shapes which have a boundary that is regular in terms of C2 and has
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constrained reach by means of Fh0 . Figure 8.1 shows two exemplary shapes in S. Ele-
ments of S now have sufficient structure to formulate the following convergence criterion.
Let {Γk}k≥1 be a sequence in S and assume Γ∗ ∈ S. Then it can be shown [CFK04,
Prop. 4, Prop. 5] that

(8.6) dΓk −→
H1(Ω)

dΓ∗ ⇔ dH(Γk,Γ
∗)

k→∞−→ 0.

To embed this result in the registration framework discussed here suppose
Γk = supp(χ0 ◦ (id + wk)) and Γ∗ = supp(χ1), where χ0 denotes the template and χ1

the reference edge map. Note carefully that wk has to be sufficiently smooth to have
Γk ∈ S. For fixed ε > 0 define the respective mollified edge maps χεi according to
(7.3) for i = 0, 1. Further, using the introduced notation let Ūε(Γk) and Ūε(Γ

∗) be the
closed ε-tubular neighborhoods of Γk and Γ∗ respectively. Note that by setting w0 := 0
this yields by Definition (7.3) that supp(χε0) = Ūε(Γ0) and similarly supp(χε1) = Ūε(Γ

∗).

Suppose dH(Γk,Γ
∗)

k→∞−→ 0 then (8.6) implies

0
∞←k←− 1

2ε
‖dΓk − dΓ∗‖2H1(Ω) ≥

1

2ε
‖dΓk − dΓ∗‖2L2(Ω)

≥1

2

ˆ
Ūε(Γk)∪Ūε(Γ∗)

∣∣∣∣dΓk

ε
− dΓ∗

ε

∣∣∣∣2 dx
=

1

2

ˆ
Ω
|χε0 ◦ (id +wk)− χε1|

2 dx = Sε[wk].

In other words, if the reference and the template edge sets are sufficiently regular, i.e.,
Γ0,Γ

∗ ∈ S, and the reference edge set Γ∗ can be expressed as the Hausdorff limit of
a sequence of smoothly deformed edge sets Γk, then the introduced similarity measure
Sε converges to zero. Thus the Hausdorff distance is a stronger distance measure than
Sε. Note carefully that this weaker notion of similarity in Sε is expressly desired in
our context because of the following. Due to the sensitivity of the Hausdorff distance
small deviations in the template and reference edge sets are clearly reflected in dH(Γ0,Γ

∗).
Thus compared to minimizing a SSID type measure, H1(Ω)-similarity or by (8.6) minimal
Hausdorff distance for admissible shapes, may require substantial algorithmic effort while
possibly only slightly changing the computed deformation field. Moreover, in practice
we usually cannot guarantee that template and reference edge sets are admissible shapes.
Then a minimization of the Hausdorff distance might be even more complex.
In contrast our developed strategy (see Algorithm 9.1) is based on the idea of computing a
rough registration for large values of ε > 0 that is iteratively refined as ε becomes smaller.
Thus H1(Ω)-similarity is not wanted for large values of ε and not needed for small ε since
we favor local minimizers of Jεreg (compare the discussion of the one-dimensional example
in Section 7.3).
Having discussed existence and asymptotic properties of solutions to (8.1) the next section
sets up the associated optimality system and establishes a solution strategy.

8.3 Optimality Conditions and Solution Strategy

To derive an optimality system for the minimization of Jεreg we use again Gâteaux differ-
ential calculus (compare Appendix B.2). Thus we start by noting that Jεreg is everywhere
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Gâteaux differentiable. For the sake of a clear presentation we compute the derivatives of
Sε and P separately. The Gâteaux derivative of the similarity measure is readily estab-
lished

δSε

δw
[w;v] =

d

ds

(
1

2

ˆ
Ω
|χε0 ◦ (id +w + sv)− χε1|

2 dx

)∣∣∣∣
s=0

=

ˆ
Ω

(χε0 ◦ (id +w + sv)− χε1)∇χε0 ◦ (id +w + sv) · v dx
∣∣∣∣
s=0

=

ˆ
Ω

(χε0 ◦ (id +w)− χε1)∇χε0 ◦ (id +w) · v dx.

For the linear elastic potential we obtain

δP

δw
[w;v] =

d

ds

(
1

2

ˆ
Ω
λ(∇ · (w + sv))2 + µ

∣∣∣∇(w + sv)> +∇(w + sv)
∣∣∣2 dx)∣∣∣∣

s=0

=

ˆ
Ω
λ(∇ ·w)(∇ · v) + µ(∇w> +∇w) : (∇v> +∇v) dx,

and thus the weak formulation of the necessary optimality condition associated to (8.1) is
given by (compare, e.g., [Lue69, Sec. 7.4, Th. 1])

(8.7) 0 =
δJεreg

δw
[w;v] =

δSε

δw
[w;v] +

δP

δw
[w;v], ∀v ∈ H1(Ω).

Note that the composition of χε0 with w in δSε

δw makes the derived weak formulation non-
linear in w. Thus in contrast to the weak problems discussed so far, (8.7) cannot be
written in terms of a bilinear form and a linear functional and hence requires a different
solution strategy (for an introduction to non-linear problems see, e.g., [Eva08, Pt. III]).
One approach to solve such a non-linear problem is to employ an infinite dimensional
version of Newton’s method (for an exhaustive review see [Deu04, Chap. 8]). Thus we
introduce

(8.8)


δ2Jεreg

δw2
[wk;v,dk] =−

δJεreg

δw
[wk;v], ∀v ∈ C∞(Ω̄),

wk+1 =wk + tdk,

k = 1, 2, . . . ,

where t > 0 denotes a given step size. Note carefully that (8.8) is linear in dk. Thus
by considering (8.8) instead of (8.7) we transform the solution of one non-linear equation
to the iterative solution of several linear problems. For computing the second Gâteuax
derivative of Jεreg we split up the calculation again and start by considering

δ2P

δw2
[w;v,d] =

d

ds

(ˆ
Ω
λ(∇ · (w + sd))(∇ · v) dx

+

ˆ
Ω
µ(∇(w + sd)> +∇(w + sd)) : (∇v> +∇v) dx

)∣∣∣∣
s=0

=

ˆ
Ω
λ(∇ · d)(∇ · v) + µ(∇d> +∇d) : (∇v> +∇v) dx.
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For the second derivative of the similarity measure we get

δ2Sε

δw2
[w;v,d] =

d

ds

(ˆ
Ω

(χε0 ◦ (id +w + sd)− χε1)∇χε0 ◦ (id +w + sd) · v dx
)∣∣∣∣

s=0

=

ˆ
Ω
v> (∇χε0 ◦ (id +w)) (∇χε0 ◦ (id +w))> d dx

+

ˆ
Ω

(χε0 ◦ (id +w)− χε1)v>
(
∇2χε0 ◦ (id +w)

)
d dx.

(8.9)

Note that the second non-symmetric term in (8.9) disturbs the positive definiteness of
δ2Jεreg

δw2 . Neglecting it we obtain an approximation of δ
2Sε

δw2 that only involves the symmetrized
gradient of the blurred template edge map

δ2Sε

δw2
[w;v,d] ≈

ˆ
Ω
v> (∇χε0 ◦ (id +w)) (∇χε0 ◦ (id +w))> d dx.

Thus we can write an approximation of the second derivative of Jεreg in terms of a bilinear
form Breg : H1(Ω)×H1(Ω)→ R given by

Breg[d,v] :=

ˆ
Ω
λ(∇ · d)(∇ · v) + µ(∇d> +∇d) : (∇v> +∇v) dx

+

ˆ
Ω
v> (∇χε0 ◦ (id +w)) (∇χε0 ◦ (id +w))> d dx,

for some w ∈ H1(Ω). Note that for a given deformation field w the right hand side of
(8.8) is a linear function of v ∈ H1(Ω). Thus we introduce freg : H1(Ω)→ R defined by

freg[v] :=−
ˆ

Ω
λ(∇ ·w)(∇ · v) + µ(∇w> +∇w) : (∇v> +∇v) dx

−
ˆ

Ω
(χε0 ◦ (id +w)− χε1)∇χε0 ◦ (id +w) · v dx.

Thus the Newton step seen in (8.8) is approximated by the following variational problem

(8.10) Breg[d,v] = freg[v], ∀v ∈ H1(Ω).

Note that straight-forward calculations show boundedness of Breg and freg. If the deformed
blurred template edge map χε0 ◦ (id + w) is ”sufficiently unsymmetric” then by using
Korn’s inequality [Bre04] it can be proved that the second term in Breg coerces the kernel
of the first term. Then the Lax–Milgram Lemma (Appendix (B.2)) yields existence and
uniqueness of a solution to (8.10). Thus each approximate Newton step is well posed. We
summarize this fact in the following result.

Theorem 15. Given Assumption 9 let w ∈ H1(Ω). Suppose

ˆ
Ω
|∇χε0 ◦ (id +w) · (c+Wx)|2 dx = 0 implies c+Wx = 0, ∀W ∈ S2, ∀c ∈ R2.

Then there exists a unique d ∈ H1(Ω) satisfying (8.10).

Proof. See the proof of Theorem 2 in [FKPP10].
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8.3 Optimality Conditions and Solution Strategy

Under standard assumptions convergence of Newton’s method can be proved using classical
results such as the Newton–Kantorovich Theorem (see, e.g., [Deu04]). For solving (8.10)
in practice we consider the following. Note that while (8.10) is linear in d, both Breg

and freg depend on the deformed blurred template edge map χε0 ◦ (id + w) or explicitly
χε0(x + w(x)). Hence w appears as argument of χε0 which complicates a finite element
discretization of (8.10) considerably as opposed to a standard finite difference approach.
Note further that in the present context it is uncertain whether a finite element approach
poses any significant improvements over a finite difference formulation. In contrast, the
practical realization of the Inner and Outer Iterations (discussed in Chapter 5) greatly
benefits from the use of finite elements; since it is not clear how to discretize consistently
the binary edge map χ using finite differences. However, in the context of finite elements,
χ is simply a variable coefficient in a bilinear form. Thus we employed a finite element
approach to establish an unambiguous discretization of the binary edge map χ. Conversely,
the registration framework discussed here is based on blurred edge maps which can be
discretized naturally using finite differences. Furthermore, finite difference approximations
are thoroughly investigated and well established in elastic image registration (compare
[Mod04, Sec. 9.4]). Hence we rely on a finite difference discretization of (8.10). Thus we
start by deducing the associated strong formulation of (8.7) by first shifting derivatives
from v to d in δP

δw using partial integration

δP

δw
[w;v] =

ˆ
∂Ω
λ(∇ ·w)(v · n) + µv>(∇w> +∇w)n dS(8.11)

−
ˆ

Ω
λ∇(∇ ·w) · v + µ(∇(∇ ·w) + ∆w) · v dx.

We use this representation of δPδw in (8.7). By density of C∞(Ω̄) in H1(Ω) [Ada75, Th. 3.16],
(8.7) holds for any variation v ∈ C∞(Ω̄). Thus we may apply the fundamental Lemma of
calculus of variations [Ada75, Cor. 3.26] to obtain the strong formulation

(8.12)


Ew =f [w], in Ω,

λnl∇ ·w + µ(∇wl +
∂

∂xl
w) · n =0, on ∂Ω, l = 1, 2,

with

(8.13) Ew := (λ+ µ)∇(∇ ·w) + µ∆w,

and

(8.14) f [w] := (χε0 ◦ (id +w)− χε1)∇χε0 ◦ (id +w),

where w(x) := (w1(x), w2(x)) and n := (n1, n2) denotes the outer unit normal vector on
∂Ω. Note that the boundary condition in (8.12) results from letting v be a smooth function
that is concentrated on ∂Ω such that the second integral in (8.11) vanishes more rapidly
than the boundary integral and otherwise v has only one locally non-trivial component.
The operator E is the so-called elasticity operator and f is the driving force of the regis-
tration. Note that (8.12) are the Euler–Lagrange equations associated to the minimization
problem (8.1), i.e., the strong formulation of (8.7). Thus (8.12) is similarly a system of
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8 Analysis of The Registration Approach

non-linear PDEs. Observe further that the driving force f is the strong formulation of
the derivative of the similarity measure Sε. The same correspondence exists between the
elasticity operator E and the linear elastic penalty P .
Analogous to the calculation carried out in (8.11) we also apply partial integration in δ2P

δw2 .
Then we may rely again on the fundamental Lemma of calculus of variations to derive a
strong formulation of the Newton step (8.10). By (8.8), dk = 1

t (wk+1 −wk), thus if wk

satisfies the boundary conditions of (8.12) so does dk and hence we obtain

(8.15)


(
−E + (∇χε0 ◦ (id +wk)) (∇χε0 ◦ (id +wk))

>
)
dk =Ewk − f [wk], in Ω,

λnl∇ ·wk + µ(∇wkl +
∂

∂xl
wk) · n =0, on ∂Ω,

for l = 1, 2 and wk(w) := (wk1(x), wk2(x)) with k ∈ N. Note that (8.15) as being the
strong formulation of (8.8) is a linear PDE system in dk.
In the next chapter we set up a finite difference discretization of (8.15) and give a detailed
pseudo-code of the proposed registration approach for edge maps.
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Practical Realization

In this chapter we develop an explicit representation of the the strong formulation of the
Newton step (8.15) in the discrete setting using finite differences. Following the presenta-
tion in [FKPP12] we subsequently set up a detailed pseudo-code of the proposed strategy
for the elastic registration of edge maps. Finally, we embed the novel approach for com-
puting binary edge maps introduced in Chapter 3 in the registration framework discussed
here.

9.1 Discretization of the Newton Step

In agreement with terminology introduced in Chapter 5 let h = 1/N denote the cellsize
used and accordingly let Ωh be an equidistant grid of size N×N on Ω with cellwidth h. For
the following derivation we drop the iteration index k seen in (8.15) to avoid excessively
complex notation. We start by discretizing the elasticity operator E given by (8.13). Thus
let x = (x, y) ∈ Ω and w := (u, v). We rewrite (8.13) more explicitly in terms of the
component functions u and v of w, i.e.,

Ew =(λ+ µ)∇
(
∂

∂x
u+

∂

∂y
v

)
+ µ

(
∂2

∂x2
w +

∂2

∂y2
w

)
=

(
(λ+ 2µ) ∂2

∂x2 + µ ∂2

∂y2 (λ+ µ) ∂2

∂x∂y

(λ+ µ) ∂2

∂x∂y µ ∂2

∂x2 + (λ+ 2µ) ∂
2

∂y2

)(
u
v

)
.

With operators E i,j , 1 ≤ i, j ≤ 2, acting on u and v this can be rewritten as

Ew =

(
E1,1 E1,2

E2,1 E2,2

)(
u
v

)
.

Let U ,V ∈ RN2
be lexicographically ordered approximations of u and v respectively on

the grid Ωh. Then we can associate matrices Ei,j ∈ RN2×N2
to the operators E i,j such

that

E [u(Ωh), v(Ωh)] ≈
(
E1,1 E1,2

E2,1 E2,2

)(
U
V

)
.

The stencils for the matrices are given in Appendix C.3. Then with

E :=

(
E1,1 E1,2

E2,1 E2,2

)
∈ R2N2×2N2

and W :=

(
U
V

)
∈ R2N2

,
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9 Practical Realization

we can write this block matrix system as

EW =

(
E1,1 E1,2

E2,1 E2,2

)(
U
V

)
.

The discretization of terms involving the deformed blurred template edge map
χε0 ◦ (id +w) requires the use of an interpolation scheme if w contains non-integer values.
We use bilinear interpolation (see, e.g., [Mod04, Sec. 3.1.3]) to approximate χε0(x+w(x)) if
x+w(x) is not a grid point and assign the extrapolation value zero if x+w(x) /∈ Ω. Thus
let χε0 ∈ RN

2
denote the lexicographically ordered vector that approximates χε0 ◦ (id +w)

on Ωh according to this procedure. The finite difference discretization of ∇χε0 ◦ (id +w)
is obtained analogously. We consider the partial derivatives of χε0(x +w(x)) separately.
Thus we introduce the vectors Dxχ

ε
0 ∈ RN

2
and Dyχ

ε
0 ∈ RN

2
holding central difference

approximations of ∂
∂xχ

ε
0(x+w(x)) and ∂

∂yχ
ε
0(x+w(x)) respectively on Ωh. In accordance

with Section 5.3, let D[Y ] denote again the diagonal matrix with the values of some vec-
tor Y on its main diagonal. Then a finite difference approximation of the symmetrized
gradient of χε0 ◦ (id +w) on the left hand side of (8.15) is given by

Dχε0 :=

(
D[Dxχ

ε
0]D[Dxχ

ε
0] D[Dxχ

ε
0]D[Dyχ

ε
0]

D[Dyχ
ε
0]D[Dxχ

ε
0] D[Dyχ

ε
0]D[Dyχ

ε
0]

)
∈ R2N2×2N2

.

Thus Dχε0 has the same size as E and is comprised of diagonal blocks. Note that the
multiplication of two diagonal matrices corresponds to situating a componentwise vector
multiplication on the diagonal of a matrix.
A finite difference discretization of the driving force f given by (8.14) can be established
in a similar fashion. Considering the partial derivatives of χε0(x+w(x)) again separately
we have

f [w] =

(
(χε0(x+w(x))− χε1(x)) ∂

∂xχ
ε
0(x+w(x))

(χε0(x+w(x))− χε1(x)) ∂
∂yχ

ε
0(x+w(x))

)
.

The discretization of the blurred reference edge map is achieved in a straight forward
manner. Thus let χε1 ∈ RN

2
denote the vector of values of χε1 on Ωh in lexicographic

ordering. Then using the notation introduced above the driving force f is discretized by

F :=

(
D[χε0 − χε1]Dxχ

ε
0

D[χε0 − χε1]Dyχ
ε
0

)
R2N2

.

Thus, in terms of the introduced expressions a finite difference discretization of the Newton
step is established as follows. Find D ∈ R2N2

solving

(−E + Dχε0)D = −EW − F .

Note that for the sake of readability the introduced symbols Dχε0 and F do not reflect
the dependence of the respective quantities on the deformation field w. However, in the
course of deriving a discrete version of Newton’s method we have to identify variables
explicitly that change in the course of the iteration. Hence we take up the iteration index
k again and augment all symbols that depend upon the current deformation field by the
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9.2 A Registration Strategy for Edge Maps

subscript k. Then a finite difference discretization of (8.15) takes the form

(9.1)

{(
−E + Dχε0,k

)
Dk =−EWk − Fk,

Wk+1 =Wk + tkDk,
k = 1, 2, . . . ,

with tk > 0. Having set up the discrete framework for (8.8) we can now focus on the
details of the registration strategy.

9.2 A Registration Strategy for Edge Maps

Based on the discrete approximations introduced in the previous section we start our
discussion by considering the line-search strategy used, i.e., the technique used to determine
the step size tk. Thus let Jεreg,h denote a discrete approximation of Jεreg and let L > 1 be
a natural number. Then tk is computed by solving

(9.2)


tk = arg min

t∈T
Jεreg,h[Wk + tDk],

T :=

{
t =

2l

L
|l = 1, . . . , L

}
.

In contrast to common line-search algorithms found in literature, e.g., Armijo–Goldstein
or Wolfe–Powell strategies (compare [NW00, Chap. 3] or [Kel99, Sec. 3.2]), (9.2) explicitly
allows step sizes larger than one by minimizing Jεreg,h on the interval [2/L, 2]. In numerous
practical tests the approach (9.2) proved to be very reliable and computationally efficient.
As long as L is not chosen exceptionally large, only a few evaluations of Jεreg,h are needed
to solve (9.2).
For establishing appropriate stopping criteria we make the following crucial observation.
Note that the right hand side of (9.1) is the discrete formulation of the Euler–Lagrange
equations (8.12). Since the Newton iteration was developed to compute a solution of (8.1)
we ideally want that EW = F . We use this property to formulate a relative stopping
criterion. Let rk+1 := −EWk+1 − Fk+1 and define

(9.3) rb :=
|rk+1|
|r1|

.

Hence the method terminates if the residual rk+1 becomes sufficiently small in relation
to r1. However, we also want to include a safeguard that stops the algorithm in case the
iteration comes to a standstill, i.e., successive iterates cease to change notably. Thus we
further introduce

(9.4) re :=
|Wk+1 −Wk|
|Wk+1|

and re := 0 if |Wk+1| = 0.

and use a combination of re and rb as stopping criterion for our registration strategy.
As briefly addressed in Section 7.3 the developed registration strategy is based on succes-
sively deblurring χεi to refine iteratively the computed deformation field. For small values

of ε the blurred edge maps χεi approximate the binary edges maps χi (since χεi
ε→0−→ χi

pointwise as addressed in Section 8.2) and thus local details in the pathway of the un-
derlying edge sets Γi are still clearly visible in χεi . Large values of ε, on the other hand,
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9 Practical Realization

Algorithm 9.1 Iterative strategy for the elastic registration of edge maps.

Input: χ0, χ1

Output: W ∗

1: Preprocesing: Center the edge sets Γi within Ω
2: Choose kinc ∈ N : kinc ≥ 2, tol∈ (0, 1), K ∈ N and ε > 0
3: Compute blurred edge maps χεi
4: Set W ∗ = 0 ∈ R2N2

5: for κ = 1, . . . ,K do

6: Set kmax = kinc · κ, k = 0, rb = re = 2·tol, W0 = W ∗ and χεi ← (χεi )
2

7: while min(rb, re) >tol and k ≤ kmax do

8: Solve (
−E + Dχε0,k

)
Dk = −EWk − Fk

9: Compute tk according to (9.2)
10: Update Wk+1 = Wk + tkDk and k ← k + 1
11: Compute rb and re given by (9.3) and (9.4) respectively

12: end while

13: Update W ∗ = Wk

14: end for

introduce excessive blurring in χεi such that small structures in Γi may be ”washed out”.
Thus an ill-chosen value for ε may have a negative effect on the registration. Hence the
idea is to start with a rather large value of ε to compute a ”rough” deformation field
reflecting only the most significant deviations of template and reference edge maps. This
is realized by choosing the maximal number of iterations kmax for Newton’s method par-
ticularly small. The computed deformation field serves as an initial guess for the next run
of Newton’s method for which we decrease the blur in χεi while simultaneously increas-
ing kmax. The updated deformation field serves as initial guess for a subsequent run of
Newton with further increased kmax and less blurred edge maps and so on. Algorithm 9.1
summarizes this procedure.
Note that we deblur the edge maps χεi by computing their elementwise square, noted (χεi )

2.
Since χεi (x) = 1 on Γi and smoothly decreases to zero away from Γi, the elementwise
squaring has no effect on edge set pixels but lowers the intensity values of pixels around
edges. Thus, repeated elementwise squaring successively reduces blur in χεi . Note further
that we perform a preprocessing step by centering the edge sets Γi within the image domain
Ω. This can be seen as a form of rigid preregistration. Since elastic registration is not well
suited to account for large translations (see, e.g., the discussion in [Mod04, Sec. 9.1]) this
preregistration can reduce the required computational effort considerably.
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9.2 A Registration Strategy for Edge Maps

Note that Algorithm 9.1 was originally designed to register a sequence of edge maps aris-
ing from cuts through three-dimensional heart models [FKPP12]. However, numerous
practical tests showed that the vanishing diffusion strategy employed in Algorithm 9.1 is
a reliable and efficient strategy for the elastic registration of edge maps in general. Thus a
natural question is whether a combination of the proposed approach for the computation
of edge maps summarized in Algorithm 5.1 and the registration strategy given by Algo-
rithm 9.1 can be employed to register image sequences that are challenging for classical
intensity based registration techniques. The next chapter discusses initial results obtained
by this combination.
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10
Edge Detection and Registration

In the following we focus on image sequences that manifest pronounced intensity variations
not only gradually in space but also abruptly in time, as for instance in a sequence of
dynamic contrast enhanced magnetic resonance images (DCE-MRIs). Figure 10.1 shows
three members of an artificial image sequence mimicking typical intensity variations seen
in MR images of the kidney before, during and after the injection of contrast agent.
A common problem in this context is to remove patient motion from the sequence for
the purpose of pointwise diagnostic investigation. This task tends to pose a significant
challenge for classical intensity based registration strategies due to the substantial intensity
variation in the sequence seen before, during and after the appearance of contrast agent.
We will show in the following that a combination of Algorithms 5.1 and 9.1 is indeed
capable of reliably registering such sequences. All results shown below have been computed
on the machine specified in the beginning of Chapter 6. The implementation was again
done in MATLAB and Python.

10.1 Combining both Approaches

Before we discuss registration results we address the specifics of this combined strategy.
As was the case in Chapter 6, we drop again the distinction between continuum and
discrete notation, i.e., we use Ĩ instead of Ĩh or Ĩh to denote the raw image. However,
the objects under consideration are again digital images of size N ×N . Thus let {Ĩk}Mk=1

denote a sequence of M images. The results shown below were obtained by employing
the following algorithmic idea. We use Algorithm 5.1 to compute a sequence of binary
edge maps {χk}Mk=1 associated to {Ĩk}Mk=1. Then we apply Algorithm 9.1 to register the
sequence {1 − χk}Mk=1 (since the successive deblurring strategy of Algorithm 9.1 is based
on edge maps that have the value one on edges and are zero otherwise). Several important
observations should be made at this point. First, note that there are numerous ways
to perform this registration. An approach that has already been successfully applied in
the context of DCE-MR images is to register consecutive pairs of images in the sequence
[Kee10]. Successively registering all pairs in the sequence essentially means that the whole
sequence is registered to the first image. However, for standard intensity based approaches
a pairwise registration is preferable over registering all images to one single reference since
image pairs usually exhibit comparable intensity modulations. The strategy employed
here, on the other hand, is based on edge maps and thus its performance is not dependent
on sufficiently similar intensities of template and reference. Thus we register χ2, . . . , χM
to the single reference χ1.
A further crucial observation is that Algorithm 5.1 computes binary edge maps while
Algorithm 9.1 is based upon blurred edge maps. Thus a natural question is whether a
combination of Algorithm 9.1 with a method that returns fuzzy edge maps would be more
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10 Edge Detection and Registration

(a) (b) (c)

Figure 10.1: Artificial images simulating the effect of contrast agent on the kidneys in a DCE-MRI
sequence. Shown is an image before (a), during (b) and after (c) the admission of
contrast agent.

Algorithm 10.1 Registration of an image sequence based on edge maps.

Input: {Ĩk}Mk=1

Output: {Ĩk,reg}Mk=1

1: Set Ĩ1,reg := Ĩ1

2: for k = 2, . . .M do
3: Compute χk for Ĩk using Algorithm 5.1
4: Compute wk by Algorithm 9.1 using 1− χk as template and 1− χ1 as reference
5: Set Ĩk,reg = Ĩk ◦ (id +wk)
6: end for

appropriate. In fact after completion of the work [FKPP10], numerous practical tests with
fuzzy edge maps that were computed by existing approaches have been performed. None
of them yielded satisfactory results. For instance, we tried to register inverted, i.e., zero off
edges and vice versa, Ambrosio–Tortorelli phase functions using the presented successive
deblurring strategy. The main problem of such an approach is that phase functions of non-
artificial and possibly noisy images tend to exhibit many weak edges. Thus inverted phase
functions are usually very densely supported in the image domain Ω. This can impair
the computed deformation field considerably since the registration tries to establish a
correspondence between all nonzero regions of the fuzzy edge maps. That usually leads
to the unwanted effect that erroneously detected weak edges corresponding to noise are
matched to one another. This tends to yield a highly non-linear deformation field.
In contrast, edge maps computed by Algorithm 5.1 have been shown to manifest robustly
distinct separated edges that are less likely to be impaired by noise corruption. This serves
the successive deblurring strategy of Algorithm 9.1 which proved to perform exceptionally
well with binary edge maps computed by our novel approach. Note that we also tested
Algorithm 9.1 with Canny edge maps. One of the most severe drawbacks of such an
approach is the high sensitivity of Canny’s edge detector to the threshold used. While
we always employed one set of parameters in Algorithm 5.1 to robustly compute edge
maps of the whole image sequence we had to manually adjust the threshold for Canny’s
detector for each image in the sequence separately. This requirement in addition to the
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(a) (b) (c)

Figure 10.2: First member of the artificial kidney MR-image sequence. Shown is the image (a), the
(inverted) edge map computed by Algorithm 5.1 using β = 5, δ = 0.2 and ϑ = 1 (b)
and its blurred version used as reference edge map in Algorithm 9.1.

sensitivity of Canny to noise (see Figure 6.3) and its inability to detect certain types of
edges (compare Figure 6.5) made its joint use with Algorithm 9.1 impractical.
Thus we employ Algorithm 5.1 to compute binary edge maps {χk}Mk=1 of the image se-
quence {Ĩk}Mk=1 to subsequently register {1 − χk}Mk=2 to 1 − χ1 by Algorithm 9.1. Hence
we obtain M − 1 deformation fields {wk}Mk=2. Since we are interested in a registration of
the image sequence {Ĩk}Mk=1 we thus apply the computed deformation fields to the images
{Ĩk}Mk=2. Hence we use the (blurred) edge maps {1 − χk}Mk=2 in the registration scheme
but the registered image sequence is given by {Ĩk ◦ (id + wk)}Mk=2. A heuristic overview
of this procedure is given in Algorithm 10.1. In the next section we present first results
obtained by using this algorithmic approach.

10.2 Edge Map Based Registration of Image Sequences

For all results in this section the default settings tolin = tolout = 1.0e − 2, kmax
out = 5 and

kmax
in = 20 have been employed in Algorithm 5.1. The registration scheme presented in

Algorithm 9.1 always used λ = µ = 0.1, kinc = 4, K = 4 and tol = 1.0e− 3.
We start by discussing the artificial kidney MR-image sequence introduced in the beginning
of this chapter (see Figure 10.1). The sequence consists of M = 150 images of resolution
128×128 simulating magnetic resonance recordings of a kidney in the presence of contrast
agent. The images do not only manifest intensity variations but also mimic patient motion
via translations and deformations of the kidney over time. Note that tissue deformations
typically seen in the kidneys during an MR acquisition may be considered as being elastic
[HKR+10]. This justifies the use of an elastic penalizer and we thus apply Algorithm 10.1
to register the sequence. Figure 10.2 shows the first image Ĩ1, the associated (inverted) edge
map computed by Algorithm 5.1 and the initial blurred edge map used in Algorithm 9.1.
Note that one set of parameters β, δ and ϑ was employed in Algorithm 5.1 to compute
edge maps {χk}150

k=1 for the whole sequence {Ĩk}150
k=1. Figure 10.3 illustrates the registration

scheme by focusing on a representative member of the sequence. The deformation field in
Panel (d) shows that the motion within the sequence is indeed non-rigid. Note that the
image depicted in Panel (a) manifests a significantly different intensity modulation than
the first image of the sequence shown in Panel (a) of Figure 10.2. Nonetheless, using the
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(a) (b)

(c) (d) (e)

Figure 10.3: Illustration of the edge map based registration approach. The first column shows the im-
age Ĩk (k = 23) and the associated edge map χk computed by Algorithm 5.1. Panel (d)
depicts the deformation field wk obtained by using the successive deblurring strategy
of Algorithm 9.1. The third column shows the registered image Ĩk ◦ (id +wk) and the
registered edge map χk ◦ (id +wk).

same parameters Algorithm 5.1 accurately computes the edge map shown in Panel (c) of
Figure 10.3. Panel (e) of the same Figure shows the registered non-blurred template edge
map. For comparison, Panel (b) of Figure 10.2 depicts the reference edge map. Visual
evaluation of the registered images {Ĩk,reg}150

k=1 showed that Algorithm 10.1 significantly
reduced motion within the sequence.
Next we consider real life images. Recall the microscopic image of cancer cells in a petri
dish depicted in Panel (a) of Figure 6.8. The image shown is the first member of a se-
quence of M = 180 raw photomicrographs of a single petri dish acquired at regular time
intervals. The objective of the application was to determine division patterns of cancer
cells over time. However, the manual placement of the petri dish under the micrograph
induced displacements in the sequence. This manual displacement in addition to the nat-
ural motility and deformation of cells this made an automatic evaluation of cell divisions
intractable. Thus the task was to remove motion to allow for further automatic postpro-
cessing. However, the sequence did not only manifest displacements and cell movement.
To differentiate cancerous from healthy cells a chemical agent was employed that caused
cancer cells to illuminate spontaneously while healthy cells showed little or no response.
This procedure induced large local intensity variations in the images. Hence this sequence
posed a registration challenge quite similar to that of the sequence of artificial kidney MR
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(a) (b) (c)

Figure 10.4: Registration of microscopic images based on edge maps. Shown is a member of the
sequence (a), the computed deformation field (b) and the registered image (c).

images discussed above. Panel (b) of Figure 6.8 shows the reference edge map χ1 computed
by Algorithm 5.1. Note again that the parameters used to obtain χ1 were also applied to
compute edge maps for the remaining images. Figure 10.4 shows an exemplary member
of the sequence and the registration obtained. The computed deformation field indicates
that the underlying displacement is indeed not purely rigid. Note that Algorithm 10.1
was able to stabilize the sequence fully. We also tested our registration approach using
the more fine-grained edge maps corresponding to ϑ = 0.5 and ϑ = 0.25 (see Figure 6.9).
The results obtained were comparable mainly since the topological structure of the edge
maps does not change as ϑ → 0 (compare the discussion in Section 6.4). This stands
in stark contrast to edge maps obtained by Canny’s edge detector. In Canny’s detector
thresholding needs to be adjusted not only for each image separately, the computed edge
maps may also manifest dramatic structural changes for minimally altered threshold values
(compare Figure 6.5). This further highlights the advantages of embedding Algorithm 5.1
in a registration framework.
Finally we return to the sequence of DCE-MRIs of a human torso. A member of this
sequence is depicted in Panel (a) of Figure 6.7. The initial image of the sequence whose
edge map served as reference in our registration strategy is shown in Figure 2.1. The
objective was to remove motion from the sequence for the purpose of pointwise diagnostic
investigation. The images manifest pronounced intensity variations not only gradually in
space but also abruptly in time. Figure 10.5 illustrates the computed registration by means
of an exemplary member of the sequence. Note first that modeling the motion seen in the
sequence as subsequent elastic deformations is not new [HKR+10] and can be justified by
biomechanical considerations. In contrast to previously published works, our edge map
based approach has the advantage of not being dependent on special preprocessing or
temporal smoothing techniques. Using Algorithm 10.1 we were indeed able to significantly
reduce motion artifacts in the sequence. However, in trying to match all edges in the
template edge maps to their corresponding counterparts in the reference edge map, the
linearly elastic registration approach induced an unwanted though small deformation in
the spinal column (compare the deformation field seen in Panel (b) of Figure 10.5). This
violates the strict requirements of clinical diagnostic investigation. A possible remedy for
this unwanted effect may lie in the restriction of the linearly elastic penalizer to specific
regions in the image. This means to register some areas of the image elastically while others
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10 Edge Detection and Registration

(a) (b) (c)

Figure 10.5: Edge map based registration of DCE-MRIs of a human torso. Shown is a member of the
sequence (a), the deformation field computed by Algorithm 9.1 (b) and the registered
image (c).

are matched according to rigid body motions. Extending Algorithm 9.1 in this manner
may have beneficial effects. Similarly, our edge map based registration scheme is of course
not limited to a linearly elastic penalty. Depending on the needs of the application at
hand, the use of a fluid, diffusion or curvature based regularization (see, e.g., [Mod04]) is
straight-forward.
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A
Notation

As a rule, albeit not strictly observed, α usually stands for a real number, the letters
i, . . . , n denote integers (following the classic from-”h”-to-”o” water-notation used in FOR-
TRAN), where i and j are used for matrix entries, k appears as index in sequences, l is used
to indicate subsequences, m denotes the degree of regularity (as in Hm(Ω) for instance)
and n refers to space dimension.

General Notation Suppose a = (a1, . . . , an) as well as b = (b1, . . . , bn) are a n-dimensional
vectors and A = (Aij) as well as B = (Bij) are a m× n matrices.

N, R set of natural numbers {1, 2, . . . } and real numbers respectively

x = (x, y) vector (usually in Ω ⊂ R2) with Cartesian coordinates x and y. All vectors,
vector valued functions and matrices are written in bold face.

a>, A> transpose of the vector a and transpose of the matrix A respectively

det(A) determinant of the matrix A

tr(A) trace of the matrix A

|α| absolute value of the real number α

|a| Euclidean norm of the vector a, i.e., |a| =
√∑n

i=1 a
2
i , unless explicitly stated

otherwise

|A| Frobenius norm of the matrix A, i.e., |A| =
√∑m

i=1

∑n
j=1A

2
ij

|ω| Lebesgue measure of the set ω

a · b usual scalar product of the vectors a and b, i.e., a · b =
∑n

i=1 aibi

A : B Frobenius inner product of the matrices A and B, i.e.,

A : B =
m∑
i=1

n∑
j=1

AijBij = tr(A>B) = tr(AB>).

Note that this component-wise inner product induces the Frobenius norm, i.e.,
|A| =

√
A : A.

∂ω boundary of the set ω

ω̄ closure of the set ω, i.e., ω̄ = ω ∪ ∂ω
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A Notation

X := Y expression Y defines expression X

a.e. abbreviation for almost everywhere, i.e., some property holds everywhere ex-
cept on a set of Lebesgue measure zero.

Functions and Derivatives Let d, n ∈ N, Ω ⊂ Rn be open, bounded and non-empty,
x = (x1, . . . , xn) be a vector and u : Ω→ R as well as u : Ω→ Rd (d > 1) be functions.

Rg(u) range of the function u, i.e., Rg(u) = {u(x) ∈ R |x ∈ Ω}

supp(u) support of u, i.e., supp(u) = {x ∈ Ω |u(x) 6= 0}

ker(u) kernel of u, i.e., ker(u) = {x ∈ Ω |u(x) = 0}

id identity function, i.e., id(x) = x

∂
∂xi
u(x) i-th partial derivative of u, i.e., ∂

∂xi
u(x) := limh→0

u(x+hei)−u(x)
h (if this limit

exists) where ei denotes the i-th canonical basis vector in Rn. Analogously

we define ∂2

∂xi∂xj
u(x) := ∂

∂xi

(
∂
∂xj

u(x)
)

and so on. We employ multi-indices to

introduce an efficient shorthand representation for higher order partial deriva-
tives. Thus let α := (α1, . . . , αn) ∈ Nn be a n-tuple of natural numbers. Then
let

Dαu(x) =
∂|α|

∂xα1
1 ∂xα2

2 · · · ∂x
αn
n
u(x),

denote the partial derivative of u of order |α| :=
∑n

i=1 αi.

∇u gradient of u, i.e., ∇u := ( ∂
∂x1

u(x), ∂
∂x2

u(x), . . . , ∂
∂xn

u(x))> ∈ Rn. Note that
we always regard ∇u as column vector.

∇u Jacobian matrix of the vector field u, i.e.,

∇u :=


∂
∂x1

u1(x) ∂
∂x2

u1(x) . . . ∂
∂xn

u1(x)
∂
∂x1

u2(x) ∂
∂x2

u2(x) . . . ∂
∂xn

u2(x)
...

...
...

...
∂
∂x1

ud(x) ∂
∂x2

ud(x) . . . ∂
∂xn

ud(x)

 ∈ Rd×n

∇2u Hessian matrix of u, i.e.,

∇2u :=


∂2

∂x2
1
u(x) ∂2

∂x1∂x2
u(x) . . . ∂2

∂x1∂xn
u(x)

∂2

∂x2∂x1
u(x) ∂2

∂x2
2
u(x) . . . ∂2

∂x2∂xn
u(x)

...
...

...
...

∂2

∂xn∂x1
u(x) ∂2

∂xn∂x2
u(x) . . . ∂2

∂x2
n
u(x)

 ∈ Rn×n

∇ · u divergence of the vector field u, i.e.,

∇ · u :=
∂

∂x1
u1(x) +

∂

∂x2
u2(x) + · · ·+ ∂

∂xn
un(x) =

n∑
i=1

∂

∂xi
ui(x)
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∆u Laplacian of u, i.e.,

∆u :=
∂2

∂x2
1

u(x) + · · ·+ ∂2

∂x2
n

u(x) =

n∑
i=1

∂2

∂x2
i

u(x) = tr(∇2u) = ∇ · ∇u

Function Spaces Note that we understand the following spaces to be naturally extended
to vector fields, e.g., u ∈ C(Ω) means u : Ω → Rd is continuous (where the dimension
d > 1 is always explicitly stated in the text).

C(Ω) space of continuous functions from Ω to R

Cm(Ω) space of m-times (m ∈ N) continuously differentiable functions on Ω, i.e.,

Cm(Ω) = {u ∈ C(Ω) |Dαu ∈ C(Ω), ∀α : |α| ≤ m}

C∞(Ω) space of infinitely differentiable functions on Ω, i.e., C∞(Ω) =
⋂∞
m=0C

m(Ω)
where C0(Ω) := C(Ω)

Cm0 (Ω) subspace of functions in Cm(Ω) with support compactly contained in Ω
(m = 0, 1, . . . ,∞)

Lp(Ω) space of p-integrable (1 ≤ p < ∞) or essentially bounded (p = ∞) functions
on Ω, i.e.,

Lp(Ω) =
{
u : Ω→ R

∣∣∣u is Lebesgue measurable and ‖u‖Lp(Ω) <∞
}
,

with

‖u‖Lp(Ω) =

{(´
Ω |u|

p dx
) 1
p , 1 ≤ p <∞,

ess supx∈Ω |u(x)| , p =∞,

where
ess sup

x∈Ω
|u(x)| = inf {ξ ∈ R ||{x ∈ Ω |u(x) > ξ }| > 0} .

Wm,p(Ω) Sobolev space of Lp-functions for which weak partial derivatives of order m
exist and belong to Lp(Ω), i.e.,

Wm,p(Ω) = {u ∈ Lp(Ω) |Dαu ∈ Lp(Ω), ∀α : |α| ≤ m} .

We consider these spaces to be equipped with the usual Sobolev norm

‖u‖Wm,p(Ω) =


(∑

|α|≤k ‖Dαu‖pLp(Ω)

) 1
p
, 1 ≤ p <∞,∑

|α|≤k ‖Dαu‖L∞(Ω) , p =∞.

Hm(Ω) Hilbert space of square integrable Sobolev functions, i.e., Hm(Ω) = Wm,2(Ω).
In this work mainly the spaces H1(Ω) and H2(Ω) are used. For these spaces
the associated norms can be written in terms of the previously introduced
notation

‖u‖2H1(Ω) = ‖u‖2L2(Ω) + ‖∇u‖2L2(Ω) ,
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and
‖u‖2H2(Ω) = ‖u‖2L2(Ω) + ‖∇u‖2L2(Ω) +

∥∥∇2u
∥∥2

L2(Ω)
,

where ‖∇u‖L2(Ω) := ‖|∇u|‖L2(Ω) and
∥∥∇2u

∥∥
L2(Ω)

:=
∥∥∣∣∇2u

∣∣∥∥
L2(Ω)

with |·| as

given above.

Topology and Convergence Let {fk}k≥1 and f be measurable functions mapping from
Ω to Rd. Further, let X,Y be real normed spaces with norms |·|X and |·|Y respectively,
let u ∈ X and {uk}k≥1 be a sequence in X.

L(X,Y ) space of continuous linear operators from X to Y , i.e.,

L(X,Y ) =
{
T : X → Y

∣∣∣T is linear and ‖T‖X,Y <∞
}
,

with
‖T‖X,Y = sup {|Tu|Y |u ∈ X : |u|X ≤ 1}

X ′ dual space of X, i.e., X ′ = L(X,R)

uk −→
X

u {uk}k≥1 converges to u in the strong topology on X, i.e., limk→∞ |uk − u|X = 0

uk ⇀
X
u {uk}k≥1 converges to u in the weak topology on X, i.e.,

∀l ∈ X ′ : limk→∞ l[uk] = l[u]

fk
a.e.−→ f {fk}k≥1 converges to f almost everywhere on Ω, i.e., limk→∞ fk(x) = f(x)

a.e. Ω
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B
Calculus Facts

In the following we summarize classical results that are used frequently in this work. Note
that this synopsis is by no means exhaustive and just outlines important facts. For the
statements presented below suppose that d, n ∈ N, let Ω ⊂ Rn be open, bounded and
non-empty, let X be a real Banach space with norm |·|X and let H be a real Hilbert space
with norm |·|H .

B.1 Inequalities

We repeatedly employ the following estimates.

Chebyshev’s Inequality See, e.g., [Ash72, Sec. 2.4.9]. Let f : Ω → R be measurable.
Then for all 0 < p <∞ and any ε > 0

|{x ∈ Ω ||f(x)| ≥ ε}| ≤ 1

εp

ˆ
Ω
|f |p dx.

Note that the cases p = 1 and p = 2 are of particular interest in this work. For p = 1 this
estimate is often referred to as the Markov inequality, the case p = 2 is commonly known
as Chebyshev’s inequality.

Cauchy’s Inequality See, e.g., [Eva08, App. B.2]. Let α, β ∈ R. Then αβ ≤ α2

2 + β2

2 and

if α, β ≥ 0 we have for any ε > 0 that αβ ≤ εα2 + β2

4ε .

Cauchy–Schwarz Inequality See, e.g., [Ada75, Cor. 2.12]. Let u, v ∈ L2(Ω) then

| 〈u, v〉L2(Ω) | ≤ ‖u‖L2(Ω) ‖v‖L2(Ω) .

.

Young’s Inequality for Convolutions See, e.g., [RS75, Sec. IX.4]. Let 1 ≤ p, q, r ≤ ∞
such that 1

p + 1
q = 1

r + 1. Then for f ∈ Lp(Ω) and g ∈ Lq(Ω) we have

‖f ∗ g‖Lr(Ω) ≤ ‖f‖Lp(Ω) ‖g‖Lq(Ω) .
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B.2 Analytical Facts

We often rely on the classical facts given below.

Gâteaux Derivative See, e.g., [AK06, Def. 2.1.5]. Let F : X → R and u ∈ X. If the
limit

δF

δu
[u; v] := lim

s→0

1

s
(F [u+ sv]− F [u]) =

d

ds
F [u+ sv]

∣∣∣∣
s=0

,

exists for some v ∈ X it is called the directional derivative of F at u in direction v. If the
limit exists for all v ∈ X then F is said to be Gâteaux differentiable at u with Gâteaux
derivative δF

δu .

The Symmetric Difference of Sets See, e.g., [Hal74, Chap. 1 §3]. Let (B(Ω), |·|) be
the usual Borel–Lebesgue measure space, i.e., B(Ω) is the Borel σ-algebra over Ω and
|·| denotes the Lebesgue measure. For two sets A,B ∈ B(Ω) we define the symmetric
difference of two sets by

A M B := (A\B) ∪ (B\A),

or equivalently
A M B = (A ∪B)\(A ∩B).

The symmetric difference has the following properties:

� A M B = B M A (symmetry)

� (A M B) M C = A M (B M C) (associativity)

� A M ∅ = A

� A M A = ∅

� A ∩ (B M C) = (A ∩B) M (A ∩ C)

The Metric Space M(Ω) See, e.g., [Hal74, p. 168]. The symmetric difference can be
used to turn the measure space (B(Ω), |·|) into a metric space. We introduce the mapping
d : B(Ω) × B(Ω) → R ∪ {∞} defined by d(A,B) = |A M B|. Then d is clearly symmetric
and non-negative. Further,

(A M C) M (C M B) = A M B,

which yields
A M B ⊂ ((A M C) ∪ (C M B)) ,

and thus implies the triangle inequality

|A M B| ≤ |(A M C) ∪ (C M B)| ≤ |A M C|+ |C M B| .

However, for zero measure sets, d(A,B) = 0 even if A 6= B which makes (B(Ω), d) a
pseudo-metric space. Thus we introduce M(Ω) as the quotient space of (B(Ω), d) with
respect to the kernel of d, i.e., M(Ω) = (B(Ω), d)/ ker(d). Then M(Ω) is a metric space.
Note that two sets in M(Ω) are hence identified if they differ only by a set of Lebesgue
measure zero.
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B.2 Analytical Facts

Schauder’s Fixed Point Theorem See, e.g., [Sch30]. Let K be a convex subset of X and
let Φ : K → X be continuous. If Φ(K) is compact in K then Φ has a fixed point in K.

The Lax–Milgram Lemma See, e.g., [Eva08, Sec. 6.3.1]. Let a : H×H → R be a bilinear
form. Assume a is bounded, i.e., there exists a positive constant αb such that

|a[u, v]| ≤ αb |u|H |v|H , ∀u, v ∈ H.

Suppose further that a is coercive, i.e., there exists αc > 0 such that

a[u, u] ≥ αc |u|2H , ∀u ∈ H,

or equivalently

αc = inf
u∈H

a[u, u]

|u|2H
> 0.

Let f : H → R be a bounded linear functional on H, i.e., there exists αf > 0 such that
|f [v]| ≤ αf |v|H for all v ∈ H. Then there exists a unique element u∗ ∈ H such that

a[u∗, v] = f [v], ∀v ∈ H.

Weak Sequential Compactness See, e.g., [AK06, Sec. 2.1.1]. Let the space X be re-
flexive, i.e., (X ′)′ = X. Suppose the sequence {xk}k≥1 ⊂ X is bounded in X, i.e., for
all k ∈ N: |xk| ≤ c for some c > 0. Then {xk}k≥1 has a weakly convergent subsequence
{xkl}l≥1 which means there exists x∗ ∈ X such that xkl ⇀

X
x∗ as l→∞.
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C
Addenda

The following items have been left out in the main part mostly for the sake of readability
and to avoid cluttering up the text. However, the reader may be interested in some of the
details presented below.

C.1 Euler–Lagrange Equation for JTA

Recall that

JTA[I] :=
1

2

ˆ
Ω

1

ν

∣∣∣I − Ĩ∣∣∣2 + |∇I|2 dx.

Note that JTA is everywhere Gâteaux differentiable. Thus we start by computing the
Gâteaux derivative of JTA in an arbitrary direction v ∈ C∞(Ω̄). Using partial integration
we obtain

δJTA

δI
[I; v] =

d

ds

(
1

2

ˆ
Ω

1

ν

∣∣∣I + sv − Ĩ
∣∣∣2 + |∇(I + sv)|2 dx

)∣∣∣∣
s=0

=

ˆ
Ω

1

ν
(I − Ĩ)v +∇I · ∇v dx

=

ˆ
Ω

1

ν
(I − Ĩ)v +

ˆ
∂Ω
v∇I · n dS −

ˆ
Ω
v∆u dx,

where n denotes the outer unit normal vector on ∂Ω. The weak necessary optimality
condition for the minimization of JTA is (compare, e.g., [Lue69, Sec. 7.4, Th. 1])

δJTA

δI
[I; v] = 0, ∀v ∈ C∞(Ω̄).

Under the assumption that I is sufficiently regular we may apply the fundamental Lemma
of calculus of variations [Ada75, Cor. 3.26] to obtain the Euler–Lagrange equation−ν∆I + I =Ĩ , in Ω,

∂

∂n
I =0, on ∂Ω.

C.2 Stencils for Matrices discussed in Section 5.3

We illustrate the nonzero structure of the involved matrices by giving explicit representa-
tions of stencil weights for neighbors of field cells. In the case of boundary cells the stencils
are modified by adequate zero padding of χh outside of the grid.
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C Addenda

We start by considering the bending matrix A[χh] associated to Ah given by (5.5). Note

that S
(2)
h (Ω) was chosen to be the approximation space in (5.4). Hence, to respect the

support of quadratic splines (compare Figure 5.1) we have to consider the 3 × 3 neigh-

borhood of a field cell. Recall that χh ∈ S
(0)
h (Ω) and thus χh is cellwise constant. The

values of χh are lexicographically ordered. Thus, to simplify notation suppose χh has the
following values on a prototype field cell

ξ7 ξ8 ξ9

ξ4 ξ5 ξ6

ξ1 ξ2 ξ3

Then the nonzero structure of A[χh] is based on the following stencil

1

360h4


a?11 a?12 a?13 a?14 a?15

a?21 a?22 a?23 a?24 a?25

a?31 a?32 a?33 a?34 a?35

a?41 a?42 a?43 a?44 a?45

a?51 a?52 a?53 a?54 a?55

 ,

where

a?11 =26ξ7, a?21 =53(ξ7 + ξ8),

a?12 =53(ξ4 + ξ7), a?22 =− 136(ξ4 + ξ5 + ξ7 + ξ8),

a?13 =− 19ξ1 + 134ξ4 − 19ξ7, a?23 =− 37ξ1 − 37ξ2 − 208ξ4 − 208ξ5 − 37ξ7 − 37ξ8,

a?14 =53(ξ1 + ξ4), a?24 =− 136(ξ1 + ξ2 + ξ4 + ξ5),

a?15 =26ξ1, a?25 =53(ξ1 + ξ2),

a?31 =− 19ξ7 + 134ξ8 − 19ξ9,

a?32 =− 37ξ4 − 208ξ5 − 37ξ6 − 37ξ7 − 208ξ8 − 37ξ9,

a?33 =2(58ξ1 + 157ξ2 + 58ξ3 + 157ξ4 + 688ξ5 + 157ξ6 + 58ξ7 + 157ξ8 + 58ξ9),

a?34 =− 37ξ1 − 208ξ2 − 37ξ3 − 37ξ4 − 208ξ5 − 37ξ6,

a?35 =− 19ξ1 + 134ξ2 − 19ξ3,

a?41 =53(ξ8 + ξ9), a?51 =26ξ9,

a?42 =− 136(ξ5 + ξ6 + ξ8 + ξ9), a?52 =53(ξ6 + ξ9),

a?43 =− 37ξ2 − 37ξ3 − 208ξ5 − 208ξ6 − 37ξ8 − 37ξ9, a?53 =− 19ξ3 + 134ξ6 − 19ξ9,

a?44 =− 136(ξ2 + ξ3 + ξ5 + ξ6), a?54 =53(ξ3 + ξ6),

a?45 =53(ξ2 + ξ3), a?55 =26ξ3.
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C.2 Stencils for Matrices discussed in Section 5.3

Using the same format the following stencil constructs the Gram matrix G[χh] of Ah

1

14 400


g?11 g?12 g?13 g?14 g?15

g?21 g?22 g?23 g?24 g?25

g?31 g?32 g?33 g?34 g?35

g?41 g?42 g?43 g?44 g?45

g?51 g?52 g?53 g?54 g?55

 ,

where

g?11 =ξ7, g?21 =13(ξ7 + ξ8),

g?12 =13(ξ4 + ξ7), g?22 =169(ξ4 + ξ5 + ξ7 + ξ8),

g?13 =6(ξ1 + 9ξ4 + ξ7), g?23 =78(ξ1 + ξ2 + 9ξ4 + 9ξ5 + ξ7 + ξ8),

g?14 =13(ξ1 + ξ4), g?24 =169(ξ1 + ξ2 + ξ4 + ξ5),

g?15 =ξ1, g?25 =13(ξ1 + ξ2),

g?31 =6(ξ7 + 9ξ8 + ξ9),

g?32 =78(ξ4 + 9ξ5 + ξ6 + ξ7 + 9ξ8 + ξ9),

g?33 =36(ξ1 + 9ξ2 + ξ3 + 9ξ4 + 81ξ5 + 9ξ6 + ξ7 + 9ξ8 + ξ9),

g?34 =78(ξ1 + 9ξ2 + ξ3 + ξ4 + 9ξ5 + ξ6),

g?35 =6(ξ1 + 9ξ2 + ξ3),

g?41 =13(ξ8 + ξ9), g?51 =ξ9,

g?42 =169(ξ5 + ξ6 + ξ8 + ξ9), g?52 =13(ξ6 + ξ9),

g?43 =78(ξ2 + ξ3 + 9ξ5 + 9ξ6 + ξ8 + ξ9), g?53 =6(ξ3 + 9ξ6 + ξ9),

g?44 =169(ξ2 + ξ3 + ξ5 + ξ6), g?54 =13(ξ3 + ξ6),

g?45 =13(ξ2 + ξ3), g?55 =ξ3.

Since S
(1)
h (Ω) was selected as approximation space in (5.11) the stencil for the stiffness

and Gram matrix associated to Bb,h defined by (5.12) is smaller then the one for A[χh]
and G[χh] respectively. Since linear splines have smaller support than quadratic splines
(compare again Figure 5.1) we only have to consider the following four values of χh on a
2× 2 prototype field cell

ξ3 ξ4

ξ1 ξ2

Then the nonzero structure of the stiffness matrix B[χh] is based on the stencil

1

6h2

 −2ξ3 −ξ1 − ξ3 2ξ1

−ξ3 − ξ4 4(ξ1 + ξ2 + ξ3 + ξ4) −ξ1 − ξ2

−2ξ4 −ξ2 − ξ4 −2ξ2

 .
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The Gram matrix C[χh] for Bb,h is constructed using the stencil

1

36

 ξ3 2(ξ1 + ξ3) ξ1

2(ξ3 + ξ4) 4(ξ1 + ξ2 + ξ3 + ξ4) 2(ξ1 + ξ2)
ξ4 2(ξ2 + ξ4) ξ2

 .

Stencils of B[1 − χh] and C[1 − χh] associated to Bf,h given by (5.14) are obtained by
replacing ξi with 1 − ξi in their respective counterparts. Finally, the projection matrices
P1 and P2 are obtained by using the stencils

1

4

(
1 1
1 1

)
,

and

1

36

 1 4 1
4 16 4
1 4 1

 ,

respectively.

C.3 Stencils for the Discrete Elasticity Operator

We illustrate the nonzero structure of the matrices Ei,j by explaining the discretization of
the associated operators E i,j , 1 ≤ i, j ≤ 2, using explicit representations of stencil weights
for cells near a corner of the grid Ωh.
We start by considering the matrix E1,1. The following stencils discretize the operator
E1,1 near the lower left corner of the grid

(C.1)
1

4h2

 0 0 −2µ
0 8µ+ 4λ −4µ− 4λ
0 0 −2µ

  −2µ 0 −2µ
−4µ− 4λ 16µ+ 8λ −4µ− 4λ
−2µ 0 −2µ


 0 0 −2µ

0 2λ+ 4µ −2µ− 2λ
0 0 0

  −2µ 0 −2µ
−2µ− 2λ 8µ+ 4λ −2µ− 2λ

0 0 0

 ,

where the upper right block holds the stencil weights for neighbors of a field cell while the
other blocks show stencil weights for neighbors of boundary cells. Using the same format
the stencils discretizing the operator E1,2 near the same corner of Ωh are given by

(C.2)
1

4h2

 0 µ− λ −µ− λ
0 0 0
0 −µ− λ µ+ λ

  µ+ λ 0 −µ− λ
0 0 0

−µ− λ 0 µ+ λ


 0 µ− λ −µ− λ

0 µ+ λ −µ+ λ
0 0 0

  µ+ λ 0 −µ− λ
µ− λ 0 −µ− λ

0 0 0

 ,

which illustrates the nonzero structure of the matrix E1,2. The stencils for E2,2 and E2,1

are obtained by adequately copying and mirroring (C.1) and (C.2) respectively.
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