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Introduction

Mathematical modelling plays a key role in modern medicine and the life sciences. In
medicine many processes are not observable via non invasive measurements. Thus mathe-
matical modelling is often the only way to assess underlying mechanisms of complex systems
such as the human cardiovascular system. A wide variation of models is used nowadays to
study physiological phenomena that are very difficult to measure even in experimentally
controllable situations.
Of main interest here is the influence of orthostatic stress on the cardiovascular system.
Studying effects of gravitationally induced hypovolemia on the human body is a wide and
active field of research. Hypovolemia provokes a drop in venous return which leads to
a decrease in arterial blood pressure. This is counteracted by a number of interdepen-
dent control mechanisms which act to stabilize cardiovascular function and recover blood
pressure. Many clinically relevant conditions arise from impaired control responses, e.g.
orthostatic intolerance or postural orthostatic tachycardia syndrome.
A number of different deterministic mathematical models have been proposed to simulate
such effects, all having in common that the short term control response induced by hypo-
volemia has to be quantified in some way. The lack of detailed physiological knowledge
concerning the exact modes of operation of the controls lead to a wide variety in design of
control loops.
In this thesis three control formulations representing popular techniques currently used in
physiological modeling are presented: a straightforward differential equation using the arc
tangent simulating basic correlations, a differential set point equation modelling not only
saturation but also time decays, and an optimal control approach based on considerations
coming from cybernetics. The first two are explicit controls requiring the detailed design
of a control gain. The latter is obtained as solution of a minimization problem.
The basic physiological concepts needed in the context of this thesis together with a descrip-
tion of the most common clinical tests to study the cardiovascular system under orthostatic
stress are presented in Chapter 1. Chapter 2 describes the derivation of a system of non-
linear ordinary differential constituting the mathematical model. In addition the design
of the presented explicit controls is explained and motivated using concepts introduced in
Chapter 1. Finally the background needed to establish the optimal control strategy is given
and applied to the introduced model. Chapter 3 is concerned with numerical simulations
of the model employing each control formulation. The presented results give a qualitative
overview of the three controls under orthostatic stress. The final discussion investigates
benefits and drawbacks when employing these (or similar) controls in comparable lumped
compartmental models. Necessary auxiliary equations, a comprehensive list of all used
parameter (and their values) and a detailed explanation of the steady state computation
of the model (needed for the optimal control approach) is found in the Appendix.



1 Physiological Background

We will give a brief overview of the basic physiological principles regarding the human
cardiovascular system needed in the context of this thesis. The description given here is
based on [26, 6] and [17] but the topics covered can be found in any physiology text book
as well. Following physiological conventions, volumes are given in liters [`], flows in liters
per minute [`/min] and pressures in millimeters of mercury [mmHg]. The latter is a non SI
unit using a predefined density of mercury at 0° Celsius and a fixed value of gravitational
acceleration and is thus of limited precision (see for instance [21]).

1.1 Heart and Circulatory System

Every cell in the human body needs a constant supply of oxygen and nutrients and a way
to remove metabolic byproducts (such as carbon dioxide) to ensure proper activity. It
is not possible for a single cell to accomplish this task on its own. Thus a mechanism
is necessary which ensures constant delivery of nutrients and removal of waste products.
In the human body this is done by a complex circulatory system of blood vessels which
makes the exchange of fluids, gases and various metabolic substrates between cells and
the external environment possible. This system is called the cardiovascular system (CVS)
and consists of the heart, blood, and blood vessels. It can be separated into two series-
connected circuits: the systemic circuit and the pulmonary circuit. The systemic circuit
connects the heart to organs and peripheral tissue regions, while the pulmonary circuit
perfuses the lungs. The heart connects both circuits and serves as a pump.

1.1.1 Blood Circulation

A sketch of the circulatory system is depicted in Figure 1.1. The human heart consists of
two pumps in series which we refer to as the left heart and the right heart. The left heart
pumps oxygenated blood into the aorta, the largest artery in the body. The aorta bifurcates
into smaller arteries conducting the blood from the heart to different regions of the body.
The arteries arborize into smaller and smaller branches called arterioles which finally fork
into the smallest vessels, the capillaries. The vessel walls of the capillaries are thin enough
to allow exchange by simple diffusion of nutrients, electrolytes and molecules between blood
and extracellular fluid, the so-called interstitium. This tissue fluid surrounds the cells and
transports materials to and from them. Deoxygenated blood flows from the capillaries into
the venules which conjoin to larger and larger veins. Finally the largest vein in the human
body, the vena cava, brings the blood back to the right heart. From there it is pumped into
the pulmonary circuit which shows essentially the same structure as the systemic circuit.
However, there is one big difference: the pulmonary arteries carry deoxygenated blood from
the right heart to the capillary network in the lungs. Here oxygen and carbon dioxide are
exchanged via breathing air and oxygenated blood leaves the capillaries to flow through
the pulmonary venules and veins back to the left heart which completes the loop. The
pressure in the arterial part of the systemic circuit is much higher compared to its venous
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Figure 1.1: Sketch of the CVS. Taken from [2].

part and the whole pulmonary circuit. Thus it is also common to divide the CVS into a
high- and a low-pressure system.

1.1.2 Vasculature

Blood vessels are often characterized by their interaction with the blood flow. Of main in-
terest here are compliance vessels (sometimes also calledWindkessel-vessels) and resistance
vessels. The first type of vessels includes the arteries close to the heart which are elastic
to ensure a continuous blood flow despite the pulsating ejection of blood by the heart. If,
for instance, the aorta would have the properties of a steel pipe, the blood stream would
stand still after completion of each heart beat. Instead, the vessel walls are able to expand
and contract helping the pulse wave to evolve smoothly. This is called Windkessel-function
(referring to reservoirs connected to piston pumps). Similar mechanisms make it possible
to shift blood from the venous system (65% of the total blood volume are located in veins
and venules) to other vascular regions. The so-called unstressed volume plays a key role
in such blood transfers. The unstressed volume of a vessel is the volume which fills the
blood vessel without stressing its walls. Accordingly the stressed volume refers to the vol-
ume which when added to the unstressed volume expands the vessel wall. Thus the total
volume of a blood vessel is given by its unstressed volume plus the stressed volume. The
structure of the venous vasculature makes it possible to decrease unstressed volume and
transfer it to stressed volume if needed. Furthermore, larger veins are able to push blood
to the heart by activation of muscle cells surrounding their vessel walls. Additionally small
eversions inside the veins, the so-called venous valves, prevent blood from pooling back
into the capillaries.
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1 Physiological Background

The second type of vasculature include arterioles and venules which exhibit quite other
properties. These are resistance vessels which are able to change their diameter via con-
traction or relaxation of muscle fibers located in their walls. A decrease in the diameter
of arterioles called vasoconstriction increases local resistance to blood flow whereas an in-
crease (referred to as vasodilation) decreases local resistance. This makes it possible to
regulate perfusion of body regions. The total resistance presented to the blood flow in the
CVS is called systemic or total peripheral resistance (sometimes also vascular resistance).

1.1.3 The Heart as a Pump

As mentioned above the human heart consists of the left and the right heart which act as
two pumps in series. The right heart sucks in deoxygenated blood from the systemic veins
and pumps it into the pulmonary arteries. From there blood flows to the left heart which
pushes it into the aorta. Each of the two pumps consists of an atrium and a ventricle.
The atria aid in loading blood into the ventricles which pump it into the systemic and
pulmonary circuit, respectively. The pumping is realized by a sudden contraction of the
heart (called systole) which ejects blood out of the ventricles. The heart of a healthy adult
beats around 70 times per minute which gives a heart rate of 70 beats per minute [bpm].
The volume which is ejected at each heart beat by both left and right ventricles is called
stroke volume (about 70-80 milliliters for healthy adults). Heart rate times stroke volume
gives the cardiac output which lies for a resting healthy individual at about 5 liters per
minute.

1.1.3.1 The Cardiac Cycle

At the beginning of the systole the inflow valves to the ventricles (tricuspid valve for the left
and mitral valve for the right ventricle) close and ventricular pressures increase until they
reach arterial pressures (about 80 mmHg in the aorta and ca. 10 mmHg in the pulmonary
artery). This phase is called isovolumetric contraction since until now the ventricular
volumes have not changed. As soon as ventricular pressures equal arterial pressures the
ventricular outflow valves (the aortic valve and the pulmonary valve, respectively) open
and blood is ejected. This is the beginning of the ejection phase in which ventricular
pressures keep increasing (up to a value of about 120 mmHg in the left and 15 mmHg
in the right ventricle). The end of the ejection phase is also the end of the systole and
the heart relaxes. Thus ventricular pressures decrease and the aortic and pulmonary valve
respectively close as soon as ventricular pressures are lower than arterial pressures.
This marks the beginning of the relaxation phase, the so-called diastole: the pressures in
the ventricles decrease down to the pressures in the atria which causes tricuspid and mitral
valve to open. Ventricular volumes were constant until the valves opened thus this phase is
called isovolumetric relaxation. Since the heart muscle continues relaxing after opening of
the inflow valves blood pours from the atria into the ventricles. As soon as the heart starts
contracting again the diastole ends and a new systole begins. A graphical representation
of ventricular pressure and volume during one cardiac cycle is given in Fig. 1.2.
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(a) (b)

Figure 1.2: Panel (a) shows variations in pressure (solid) and volume (dashed) during one cardiac
cycle. Panel (b) illustrates the pressure-volume relationship further. Both graphs present
typical volumes and pressures of the left ventricle. Taken from [6].

1.1.3.2 Regulation of Heart Rate and Contraction

The cardiac muscle is able to modulate both contractility (i.e. the heart’s ability to con-
tract) and stroke volume within certain bounds. For instance a rise in the amount of
systemic venous blood flowing to the heart (the so-called venous return) increases ventric-
ular filling and preload (i.e. the end-diastolic filling pressure in the left ventricle). This
causes a stretching of the cardiac muscle which results in a higher contractile force and
thus a larger stroke volume. This effect is called the Frank–Starling law. On the other hand
a suddenly increased afterload (i.e. the end-diastolic aortic pressure) may cause a slight
increase in contractility as well. This mechanism is called Anrep effect, and its exact mode
of operation needs to be clarified. Additionally a higher heart rate makes contractility
grow as well (known as Bowditch effect).
However, besides the heart’s intrinsic regulative mechanisms sympathetic and parasympa-
thetic nervous systems (both part of the autonomic nervous system) play a major role in
controlling the heart as well. Sympathetic influence generally increases cardiac activity,
whereas parasympathetic action decreases it. At rest parasympathetic regulation domi-
nates though sympathetic modulation is active as well. Parasympathetic influence on the
heart is mediated via the vagal nerve which is of major importance in cardiac adaption
to short-term stresses. In case of withdrawal of parasympathetic inhibition heart rate and
contractility grow rapidly and can be increased further by the sympathetic nervous system.

9
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Figure 1.3: Location of baro- and chemoreceptors. Taken from [6].

1.2 Blood Pressure Regulation

If we talk about blood pressure we always refer to arterial blood pressure unless otherwise
stated. In medicine blood pressure is usually given as systolic pressure Psys (the maximal
pressure in the vessels during the systole) to diastolic pressure Pdia (minimal pressure
during the diastole; used as measure for the permanent load of the vessels). We will later
on use mean pressures Pmean from which systolic and diastolic pressures can be obtained
by using the empirical formula (see for instance [17])

Pmean = 2/3 · Pdia + 1/3 · Psys.

It should be noted that systolic and diastolic pressures may change without any visible
alteration of mean arterial pressure. However, variations in Psys and Pdia are a relevant
input to several blood pressure regulation mechanisms. Thus by using mean pressures
some information about the current state of the system is lost (this issue and a possible
remedy is discussed in [10]).
It is of greatest importance that blood pressure stays within appropriate bounds. Severely
elevated values of pressure harm the heart, brain and the kidneys. If blood pressure is too
low oxygen supply of organs is deteriorated which (in case of a shock) ultimately leads to
multiple organ failure. On the other hand blood pressure has to be adapted to various
stresses such as physical exercise. Thus blood pressure regulation is a complex composite
of mechanisms which differ greatly in effect and functionality. Moreover, these controls act
on different time scales which motivates the classification into short- (responding within
seconds or minutes), mid- (minutes to hours) and long-term regulation (hours and longer).
The main focus here lies on the short term regulation. However, the human body is a closed
system thus all mechanisms are to some extent influencing each other so they should not
be seen as completely separate.

1.2.1 Short-Term Regulation

The most prominent short-term control is the so-called baroreflex-loop which depends on
stretch receptors sensitive to distensions of vessel walls caused by pressure deviations.
These sensors signal blood pressure changes to the brain, namely the medulla oblon-
gata, which stimulates the autonomic nervous system. A combination of sympathetic and
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1 Physiological Background

parasympathetic responses alters systemic resistance, cardiac contractility, venous tone
and unstressed volume.
The pressure receptors can be divided into two groups: the arterial baroreceptors found
in the high-pressure system, namely in the aorta and the carotid sinuses, sense arterial
blood pressure. Low-pressure sensors, the cardio-pulmonary baroreceptors, are found in the
atria, the ventricles, the pulmonary arteries and veins and most important the veno-atrial
junction with the vena cava. Figure 1.3 provides an overview of receptor locations. If central
venous pressure (measured at the entrance to the right atrium) decreases, total peripheral
resistance and venous tone are altered to minimize any perturbation of arterial blood
pressure. Thus the cardio-pulmonary sensors monitor cardiac input conditions whereas the
arterial baroreceptors observe the heart’s output. It should be noted that the interaction
and interference of low- and high-pressure sensors is a topic of research.
Another important control loop is the respiratory system. Besides some rather obvious
connections between the CVS and the respiratory system (e.g. the association between
pulmonary perfusion rate, ventilation and blood gas transport) blood pressure regulation
links both systems as well. Chemoreceptors in the carotid and aortic bodies are sensitive to
changes in levels of oxygen and carbon dioxide in the blood. Variations in these blood gases
activate the receptors which alters systemic resistance and heart rate. However, it should
be noted that the chemoreceptors are primarily important when the baroreceptors become
insensitive to pressure changes. This is the case if blood pressure is extremely low and thus
blood gas levels are heavily altered. Finally hydrostatic effects can move interstitial fluid
into the blood circulation to increase blood volume and thus maintain blood pressure.

1.2.2 Mid-Term Regulation

The main control in mid-term blood pressure regulation is the so-called renin-angiotensin-
aldosterone system (RAAS) which is active if the perfusion of the kidneys decreases. Via a
chain of various hormones, angiotensin II is released which induces vasoconstriction. Note
that this loop acts in concordance with the baroreflex.

1.2.3 Long-Term Regulation

Blood pressure regulation on longer time scales is realized by blood volume changes via
the kidney. High levels of blood pressure provoke an increase in excretion of fluid by
the kidneys, called pressure diuresis. This is achieved by several hormonal circuits acting
on renal tissue of which the most important are the decrease in secretion of anti-diuretic
hormone (ADH) in the brain (namely in the hypothalamus), inhibition of the RAAS and
release of atrial natriuretic factor (ANF) in the atria.

1.3 Orthostatic Stress

In supine position the impact of gravity is perpendicular to the body and therefore does
not significantly influence CVS function. Upon standing a hydrostatic force is induced
causing blood to pool in the lower limbs due to gravitational effects. The impact of
these gravitational effects on the CVS is called orthostatic stress. The postural change
from lying to standing up may sound like a trivial challenge, however, the amount of
blood pooling in the lower extremities is about 0.5 liters. This provokes a severe decrease
in arterial blood pressure if not compensated by short-term blood pressure regulation

11
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(a) (b)

Figure 1.4: HUT-table (a) and LBNP-chamber (b). Taken from [8].

mechanisms. Thus the body tries to compensate for the imposed stress before CVS function
is impaired: the baroreflex reacts and provokes an increase in systemic resistance, heart
rate and contractility and probably a decrease in venous compliance and unstressed volume.
However, people suffering from orthostatic intolerance or postural orthostatic tachycardia
syndrome (POTS) show only insufficient control responses to orthostatic stress resulting
in a drop in arterial and hence cerebral blood pressure which provokes dizziness or even
syncope and may cause injuries. Thus studying reactions to orthostatic stress is of clinical
relevance and still a field of active research.
A number of clinical tests have been developed to investigate the CVS under orthostatic
stress. These are mainly the sit-to-stand-test, the head-up-tilt (HUT) test and the lower-
body-negative-pressure (LBNP) test. The last two of which are most common since they
provide better experimental controllability. Via non invasive methods at least heart rate
and arterial blood pressure (or more cardiovascular variables) are measured. In the HUT
test a subject lies flat on a tilt-table until a resting steady state is reached. Then the
table is smoothly (within a few seconds) tilted to an angle of 70 degrees or more, see
Fig. 1.4 (a).
In this thesis we focus on the LBNP-test. The subject is placed in supine position on a table
which is partially covered by a tube-like chamber, depicted in Fig. 1.4 (b). This chamber
encloses the subject’s lower body and induces a partial vacuum by exhausting air. Thus
vessels subject to LBNP dilate which provokes a local volume increase and hence reduces
venous return. This leads to a decrease in arterial blood pressure and results in control
responses similar to those seen under stress imposed by gravitational effects. The impact of
LBNP on CVS function depends of course on the magnitude of applied sucking pressure but
also on how much of the subject’s body is exposed to the stress. There exist two standard
protocols: either the LBNP chamber is sealed at the iliac crest (from now on referred to
as ’hips’ -case) or the splanchnic region is subject to LBNP as well (the ’ribs’ -case). Some
researchers combine LBNP and HUT to provoke severe hypovolemia (i.e. a reduction in
circulating blood volume) even in healthy subjects. It should be noted that LBNP and
HUT are not completely equivalent: HUT applies stress to the CVS by gravitational forces
whereas LBNP creates an artificial negative pressure that sucks on vascular walls. Thus
the observed blood shifts are the same but transmural pressures (i.e. the pressure across
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the vessel wall) in the lower limbs differ. This is due to the squeezing of the weight of upper
blood cells on lower cells in upright position. This means that, strictly speaking, LBNP
stress is by definition not a form of orthostatic stress since no gravitational effects are
observed. However, both tests induce a temporary hypovolemia which has a comparable
impact on CVS function. Thus it is common to refer to LBNP stress as orthostatic stress
as well. Moreover, LBNP provides a highly controllable experimental environment which
has been widely and successfully used when studying the impact of weightlessness on the
CVS.

13



2 The Mathematical Model

The human CVS is modeled using a system of ordinary differential equations (ODEs).
The model is mainly composed of three parts: the heart model (developed in [16]), the
vascular components (similar to [12]) and the controls for heart rate, unstressed volume
and systemic resistance. What follows is a short description of the model’s components
and an explanation of the fundamental assumptions that have been made (a very detailed
presentation of central suppositions and techniques in modeling the human CVS can be
found in [6] or [13]).
We use the model to study the behavior of different control strategies when simulating
short-term orthostatic stress. For simplicity baroreflex regulation and local vasoconstric-
tion are considered to be the only control circuits in the body. This means the model lacks a
respiratory control, interstitial volume exchange effects, and any mid- or long-term controls
(such as volume regulation via the kidneys, the RAAS, ADH- or ANF-release as described
in Sec. 1.2). Heart rate, unstressed volume, and systemic resistance are controlled depend-
ing on arterial systemic or central venous pressure. Three different control-approaches will
be discussed in this chapter: two explicit formulations using either first order differential
set point equations or arc tangents and an optimal control strategy.
The heart model that is used is non-pulsatile, that means it computes a mean cardiac
output using mean values of heart rate and stroke volume. Contractility of the left and
right ventricle, respectively (subject to heart rate) is governed by two second order ODEs
simulating the Bowditch–effect.
Blood vessels in the arterial and venous parts of the pulmonary and systemic circuits are
lumped together into compartments. We consider a compartment to be a vessel presenting
no resistance to blood flow. This means the vessel has the ability to dilate and increase its
volume which is quantified by the vessel’s compliance, accordingly we assume these vessels
to be compliance vessels. The volume in the compartment is therefore only determined by
the applied transmural pressure (inside minus outside pressure).
Arterial and venous parts are connected by arterioles and venules, which are also lumped
together into vessels that are considered to be pure resistances to blood flow. Thus these
vessels are only characterized by the flow through them and are therefore supposed to be
resistance vessels.
The arterial and venous vasculature is modeled using ten compartments: arterial systemic
(as), peripheral (per), upper (up), renal (ren), splanchnic (spl), legs (leg), vena cava (vc),
abdominal vena cava (avc), arterial pulmonary (ap) and venous pulmonary (vp) compart-
ment. An organizational diagram is depicted in Figure 2.1. The pulmonary circuit is split
into two components (the venous and the arterial pulmonary compartments), whereas the
systemic circuit is separated into eight sections. The arterial systemic compartment rep-
resents basically the aortic root and the aortic branch. Skin and body surface tissue of
the thorax is lumped into the peripheral compartment. The upper compartment contains
the upper limbs. Note that the complex autoregulative effects which govern the brain’s
blood supply are not considered in this model. The kidneys are located in the renal com-
partment, the gastrointestinal system in the splanchnic compartment, and lower body and
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legs in the legs compartment. These are connected in parallel to the first section of the
venous part of the systemic circuit, the abdominal vena cava compartment, representing
large abdominal veins and the vena cava inferior. The last systemic component, the vena
cava compartment, holds the vena cava superior. The pulmonary and systemic circuit are
connected via the heart where the left atrium is assumed to be part of the pulmonary
venous system and the right atrium is supposed to be located in the abdominal vena cava
compartment (see Fig. 2.1).

2.1 Derivation of the model

In this section the basic elements of the model will be deduced from general physical and
special physiological considerations. A very detailed description using a similar approach
can be found in [6, 13], a related model from the viewpoint of electrical circuits is presented
in [12]. A list of all used parameters and their meaning is given in Appendix A.3.

2.1.1 Modelling hemodynamics

As explained above, the volume in a compartment is characterized by its unstressed volume
and the applied transmural pressure, thus we start by formulating a basic pressure volume
relationship. Let V denote the total compartmental volume, c its compliance, P̃ the
transmural pressure and Vu its unstressed volume. For simplification we use a linear relation
of the form

(2.1) V = cP̃ + Vu.

We assume a constant compliance c, however, in reality the compliance depends on the
pressure P̃ , i.e. c = c(P̃ ) and the general pressure volume relation is nonlinear (see for
instance [6, p. 7], [9] or [15]). If P̃ = 0 then V = Vu thus cP̃ represents the compartment’s
stressed volume. Let P be the pressure within the compartment and Pbias be the external
(atmospheric or LBNP) pressure. Then the transmural pressure P̃ can be written as
P̃ = P − Pbias, thus eq. (2.1) reads

(2.2) V = c(P − Pbias) + Vu.

The flow in the resistance vessels between compartments is depending on the pressures in
the adjacent compartments and on the resistance to blood flow. Applying Ohm’s law gives

(2.3) F =
Pin − Pout

R
,

where F denotes the flow, Pin the inflow-, Pout the outflow-pressure and R the Ohmic
resistance.
The hemodynamics of the system are obtained by looking at the change of compartmental
volumes over time. Mass balance considerations imply

(2.4)
d

dt
V = Fin − Fout,
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Figure 2.1: Architecture of the CVS-model. Arrows indicate blood flow (red symbolizes oxygenated,
blue deoxygenated blood respectively).
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where Fin denotes the flow into and Fout the flow out of the compartment. Assuming that
the following quantities are time dependent (whereby state dependencies are ignored)

P =P (t),
Pbias =Pbias(t),
Vu =Vu(t),

combining relations (2.2) and (2.4) yields

c

(
d

dt
P − d

dt
Pbias

)
+
d

dt
Vu = Fin − Fout,

or equivalently

(2.5) Ṗ =
1
c

(Fin − Fout + cṖbias − V̇u),

which is the general equation used to describe hemodynamic changes in a compartment.

2.1.2 A non pulsatile heart model

By looking at the filling process and the ejection phase in the ventricles of the heart, a
model for cardiac output can be derived (see [6, Sec. 1.1.2] or [16] for details). The inflow
into the ventricle can be obtained using a similar approach as with inter-compartmental
flows (see Sec. 2.1.1): looking at the time course of the ventricle’s volume V (t) (see
Fig. 1.2), we introduce the end-diastolic volume Vdiast and assume that the end-systolic
volume Vsyst of the current heart beat is the same as of the previous heart beat, thus
V (0) = Vsyst. Let Pv be the venous inflow pressure which is assumed to be constant during
the diastole, P (t) the pressure in the ventricle and R the ventricle’s total resistance to the
inflow. Then the flow into the ventricle (i.e. the change of the ventricular volume over
time) is governed by laws of mass balance, thus we obtain the initial value problem

(2.6)

{
V̇ = 1

R(Pv − P (t)),
V (0) = Vsyst.

Assuming that the compliance c of the relaxed ventricle is constant during the diastole
and the external pressure applied to the ventricle is zero, the pressure volume relationship
(2.2) can be used to model the relaxed ventricle’s volume:

(2.7) V (t) = cP (t) + V0,

where V0 denotes the ventricle’s unstressed volume. Using relation (2.7) in eq. (2.6) and
integrating gives

(2.8) V (t) = Vsyste
−(cR)−1t + (cPv + V0)(1− e−(cR)−1t).

Bazett’s formula (see [6, p. 10]) is used to compute the duration of the systole ts(H),
where H denotes the heart rate: let κ ∈ [0.0387, 0.0516] then

ts(H) =
κ√
H
.
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With td(H) denoting the duration of the diastole it has to hold that td + ts = 1/H, thus

(2.9) td(H) =
1√
H

(
1√
H
− κ).

And we have using (2.8) at t = td

(2.10) Vdiast = V (td) = k(H)Vsyst + (cPv + V0)a(H),

with

(2.11) k(H) = e−(cR)−1td(H) and a(H) = 1− k(H).

The Frank–Starling mechanism (the higher the end-diastolic volume, the higher the con-
tractility in the systole) can be modeled by the formula

(2.12) Vstr =
S(Vdiast − V0)

Pa
,

where Vstr denotes the stroke volume, S the ventricle’s contractility and Pa the after-load.
Furthermore, the stroke volume obeys

(2.13) Vstr = Vdiast − Vsyst.

Equations (2.10), (2.12) and (2.13) together form a linear equation system for Vdiast, Vsyst

and Vstr. Solving for the volumes yields

Vstr =
ca(H)PvS

a(H)Pa + k(H)S
,(2.14)

Vdiast =cPv + V0 −
ck(H)PvS

a(H)Pa + k(H)S
,(2.15)

Vsyst =cPv + V0 −
cPvS

a(H)Pa + k(H)S
.

From now on we assume V0 = 0. For ensuring that

Vsyst ≤ Vdiast

or equivalently (using (2.14) and (2.15))

cPva(H)S ≤ a(H)PacPv or S ≤ Pa,

we introduce the minimum function min(S, P ) in (2.14) which yields

Vstr =
cPva(H) min(S, Pa)

a(H)Pa + k(H) min(S, Pa)
, S ≥ 0.

Let the subscripts ’`’ and ’r’ denote the left and right ventricle respectively. Furthermore
let a`(H), k`(H) and ar(H), kr(H) be the variables introduced in (2.11) with c = c`,
R = R` and c = cr, R = Rr. The pre-load Pv to the left and right ventricle, respectively
is the venous pulmonary pressure Pvp and the vena cava pressure Pvc, respectively. The
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after-load Pa is given by the arterial systemic pressure Pas and the arterial pulmonary
pressure Pap (see Fig. 2.1). Thus we obtain the stroke volumes

Vstr,` =
c`Pvpa`(H) min(S`, Pas)

a`(H)Pas + k`(H) min(S`, Pas)
,

Vstr,r =
crPvcar(H) min(Sr, Pap)

ar(H)Pap + kr(H) min(Sr, Pap)
.

(2.16)

The cardiac output Q` of the left heart and Qr of the right heart is given by heart rate
times stroke volume. Thus

Q` = H
c`Pvpa`(H) min(S`, Pas)

a`(H)Pas + k`(H) min(S`, Pas)
,

Qr = H
crPvcar(H) min(Sr, Pap)

ar(H)Pap + kr(H) min(Sr, Pap)
.

(2.17)

Finally a ventricle’s contractile forces have to be determined to calculate cardiac output.
In general, the contractility of a ventricle is influenced by the autonomic nervous system
via baroreflex responses and by the heart rate H (compare Sec. 1.1.3.2). For simplification
we only consider the dependency on H, i.e. the Bowditch effect, since a control for H
will be used to simulate the action of the baroreflex. The influence of H on S` and Sr is
modeled using the following second order ODEs

S̈` + γ`Ṡ` + α`S` =β`H,

S̈r + γrṠr + αrSr =βrH,
(2.18)

with positive constants α`, αr, β`, βr, γ` and γr. It can be shown that solutions of (2.18)
are asymptotically stable for constant values of H and in steady state changes in H provoke
aligned changes in S` and Sr (see also [6, p. 13]).

2.1.3 Incorporating controls

In order to obtain a complete model, the impact of the controls for heart rate H, unstressed
volume Vu, and systemic resistance Rs on the system has to be quantified. The relation
of heart rate and contractility was explained in the previous section, thus here only the
effects of Vu and Rs are considered.
Under orthostatic stress sympathetically induced vasoconstriction is one of the counter
measures the body takes to prevent a drop in arterial pressure (see Sec. 1.3). However,
local control mechanisms may react to global increases in resistance by vasodilation ac-
cording to metabolic demands in the tissue (see for instance [6, Sec. 3.1.1]). This can
be seen as maximal tolerable increase in local resistance (a similar approach was taken
in [11]). Let Rin

comp be the inflow resistance to the compartment ’comp’, where ’comp’
stands for the systemic sections ’per’, ’up’, ’ren’, ’spl’ and ’leg’. Furthermore let Raux be
an auxiliary variable which to some extent quantifies sympathetic net activation, R0

comp

the initial compartmental inflow resistance and Kcomp determine the maximal sustainable
local resistance increase which is assumed to be constant. We define

(2.19) Rin
comp = min(R0

comp + κcompRaux,KcompR
0
comp),
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where κcomp regulates the distribution of the net increase in resistance over the compart-
ments. The inflows to the compartments ’per’, ’up’, ’ren’, ’spl’ and ’leg’ are given by

(2.20) F in
comp =

Pin − Pout

Rin
comp

.

Flows out of a compartment are computed according to (2.3) with the addition that the
effect of venous valves is included using a maximum formulation

(2.21) F out
comp = max(0,

Pin − Pout

Rout
comp

),

where Rout
comp denotes the outflow resistance (which is in contrast to the inflow resistance

assumed to be a constant parameter) of compartment ’comp’, where ’comp’ stands for
’per’, ’up’, ’ren’, ’spl’, ’leg’ and ’avc’. The pulmonary flow is assumed to be neither altered
by sympathetic vasoconstriction nor by effects of venous valves thus

(2.22) Fp =
Pap − Pvp

Rp
.

For a full list of all flows and resistances, see Appendix A.1. Another volume shift is present
by the change in unstressed volume Vu, which is included in a compartment’s general
hemodynamical equation (2.5). However, since unstressed volume is mainly recruited from
the abdominal region (see for instance [6, p. 145]) we assume a constant unstressed volume,
i.e. V̇u = 0 in all compartments except for ’ren’ and ’spl’.

20



2 The Mathematical Model

2.1.4 Setting up the complete model

For connecting the introduced parts to obtain a single model we have to transfer the second
order ODE-model for the Bowditch effect (2.18) into first order ODEs introducing two new
variables σ` and σr such that

σ` =Ṡ`,

σr =Ṡr,

σ̇` =− α`S` − γ`σ` + β`H,

σ̇r =− αrSr − γrσr + βrH.
(2.23)

Using (2.5), (2.17), (2.20), (2.21), (2.22) and (2.23) the full model is given by the following
system of ODEs

Ṗas =
1
cas

(Q` − (F in
per + F in

up + F in
ren + F in

spl + F in
leg) + casṖ

bias
as ),

Ṗper =
1
cper

(F in
per − F out

per + cperṖ
bias
per ),

Ṗup =
1
cup

(F in
up − F out

up + cupṖ
bias
up ),

Ṗren =
1
cren

(F in
ren − F out

ren + crenṖ
bias
ren − krenV̇u),

Ṗspl =
1
cspl

(F in
spl − F out

spl + csplṖ
bias
spl − ksplV̇u),

Ṗleg =
1
cleg

(F in
leg − F out

leg + clegṖ
bias
leg ),

Ṗvc =
1
cvc

(Favc + F out
per + F out

up −Qr + cvcṖ
bias
vc ),

Ṗvp =
1
cvp

(Fp −Q` + cvpṖ
bias
vp ),

Ṗavc =
1
cavc

(F out
ren + F out

spl + F out
leg − Favc + cavcṖ

bias
avc ),

Ṡ` =σ`,

σ̇` =− α`S` − γ`σ` + β`H,

Ṡr =σr,

σ̇r =− αrSr − γrσr + βrH,

V̇u =u1,

Ṙaux =u2,

Ḣ =u3,

(2.24)

where kren and kspl regulate the sequestration of unstressed volume and ui, i = 1, 2, 3 are
the control responses. Note that there is no equation for Pap. This is due to the following
fact: the initial assumption was that there is no exchange of liquid between vessels and
intercellular space, thus the total blood volume Vtot is given by

Vtot = cas(Pas − P bias
as ) + cper(Pper − P bias

per ) + cup(Pup − P bias
up )

+ cren(Pren − P bias
ren ) + cspl(Pspl − P bias

spl ) + cleg(Pleg − P bias
leg )

+ cvc(Pvc − P bias
vc ) + cvp(Pvp − P bias

vp ) + cavc(Pavc − P bias
avc )

+ cap(Pap − P bias
ap ) + Vu,

(2.25)
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which can be used to get an explicit formula for Pap:

Pap =
1
cap

(
Vtot − Vu − cas(Pas − P bias

as )

− cper(Pper − P bias
per )− cup(Pup − P bias

up )− cren(Pren − P bias
ren )

− cspl(Pspl − P bias
spl )− cleg(Pleg − P bias

leg )− cvc(Pvc − P bias
vc )

−cvp(Pvp − P bias
vp )− cavc(Pavc − P bias

avc )
)

+ P bias
ap .

(2.26)

Now let u(t) = (u1(t), u2(t), u3(t))> and

x = (Pas, Pper, Pup, Pren, Pspl, Pleg, Pvc, Pvp, Pavc, S`, σ`, Sr, σr, Vu, Raux, H)> ∈ R16

be the state vector of the system. Then the model can be written compactly as

(2.27)

{
ẋ(t) =F(x(t), u(t), t),

x(t0) =x0,

with initial conditions x0 at time t = t0 (we will assume t0 = 0) and the coordinates of
F given by (2.24).

2.2 The controls

As mentioned above three different control formulations for Vu, Raux and H will be in-
corporated into the model to test their behavior under simulated orthostatic stress. The
first one is a basic arctan-approach (a related model using these controls was presented
in [11]) which is easy to use and implement but is of very limited adaptivity (for details see
Sec. 2.2.1). The second formulation is a differential set point equation (Sec. 2.2.2). It
has the advantage over the arctan-controls that the shape of the control response can be
designed in more detail due to more adjustable parameters. However, the number of pa-
rameters is also a drawback since those have to be estimated if the model is fit to data.
The last approach is an optimal control formulation. Without explicitly designing a control
gain we will show how a stabilizing control that simulates counteractions of the CVS under
orthostatic stress can be obtained (Sec. 2.2.3). However, it is rather complicated to set up
and the model has to meet some additional requirements compared to the arctan- or set
point controls.

2.2.1 The arctan-controls

Corresponding to [12] we consider the inputs to the arterial and cardiopulmonary barore-
flex to be Pas and Pvc respectively. We assume that the arterial baroreflex only alters
systemic resistance and heart rate, whereas information from the venous receptors only
influences unstressed volume recruitment. The baroreflex is a negative feedback loop thus
the responses have to be designed such that low levels of Pas or Pvc provoke actions which
result in an increase in those pressures and vice versa. This is realized by subtracting
initial resting steady state values P 0

as = Pas(0) and P 0
vc = Pvc(0) from the current values of

Pas and Pvc respectively, scaling it by positive constants c1 and c2 and generating control
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Figure 2.2: Response of g1(Pvc) (a) and g2(Pas) (b) from (2.28) with P 0
as = 87.7 mmHg, P 0

vc = 7.5
mmHg and c1 = c̄1 = 5, c2 = c̄2 = 18

responses by using the sigmoidal shaped arc tangent. Thus deviations of Pas and Pvc from
P 0

as and P 0
vc respectively are counteracted:

V̇u =c̄1 arctan
(
Pvc − P 0

vc

c1

)
,

Ṙaux =− c̄2 arctan
(
Pas − P 0

as

c2

)
,

Ḣ =− c̄2 arctan
(
Pas − P 0

as

c2

)
.

This approach as well as the values of the constants c̄1, c̄2, c1 and c2 were taken from [12]
(however, there the arc tangents are used to generate error signals which are then further
processed to compute baroreflex effects). The right hand sides

(2.28) g1(Pvc) = c̄1 arctan
(
Pvc − P 0

vc

c1

)
and g2(Pas) = −c̄2 arctan

(
Pas − P 0

as

c2

)
,

are depicted in Figure 2.2. Note that controlling Vu means that low levels of blood pressure
are counteracted by recruiting unstressed volume to transfer it to stressed volume, i.e.
decreasing Vu. This explains the changed signs in g1(Pvc).
However, since g1(Pvc) and g2(Pas) directly influence derivatives, i.e. rates of change of H,
Vu andRaux some maximal and minimal values have to be imposed, otherwise the controlled
quantities would soon reach non physiological values. Therefore we introduce maximal and
minimal heart rates Hmax and Hmin, maximal and minimal unstressed volumes V max

u and
V min

u and a maximal sympathetic vasodilational effect Rmin
aux . A maximal vasoconstrictional

effect for Raux is not needed since maximal compartmental resistances are already included
in the local metabolic control (2.19). For ensuring that, for instance, values of H higher
than Hmax can return into the interval [Hmin, Hmax] if blood pressure increases again after
an initial perturbation of orthostatic stress, the sign of the current value of g2(Pas) has to
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be taken into account as well. Thus using (2.28) we define u(t) from system (2.27) to be

u1 =


0, for g1(Pvc) < 0 ∧ Vu ≤ V max

u ,

0, for g1(Pvc) > 0 ∧ Vu ≥ V min
u ,

g1(Pvc), otherwise,

u2 =

{
0, for g2(Pas) < 0 ∧ Raux ≤ Rmin

aux ,

g2(Pas), otherwise,

u3 =


0, for g2(Pas) > 0 ∧ H ≥ Hmax,

0, for g2(Pas) < 0 ∧ H ≤ Hmin,

g2(Pas), otherwise.

(2.29)

We will from now on refer to (2.29) as arctan controls.

2.2.2 The set point controls

The definition of the arctan controls (2.29) shows that imposing reasonable physiological
bounds on sigmoidal functions can be problematic the more complex a control loop be-
comes. However, sigmoids such as the arc tangent are very well suited to model saturation
effects which are often observed in biomedical applications. One way to use the advantages
of sigmoids is employing differential set point equations. This approach is taken from [22]
where it is used to model autonomic regulation.
Again we make use of Hmin, Hmax, V min

u , V max
u and Rmin

aux and additionally we need Rmax
aux

to specify maximal and minimal values of H, Vu and Raux, respectively. As was the case
for the arctan controls we assume that H and Raux are regulated via changes in Pas and
Vu is controlled based on variations in Pvc. We define sigmoidal set point functions V ctrl

u ,
Rctrl

aux and Hctrl to be

V ctrl
u (Pvc) =(V max

u − V min
u )

P k1
vc

P k1
vc + P̂ k1

vc

+ V min
u ,

Rctrl
aux(Pas) =(Rmax

aux −Rmin
aux )

P̂as
k2

P k2
as + P̂as

k2
+Rmin

aux ,

Hctrl(Pas) =(Hmax −Hmin)
P̂ k3

as

P k3
as + P̂as

k3
+Hmin,

(2.30)

where P̂as and P̂vc are predefined steady state values of Pas and Pvc. The minimal and
maximal values of Vu, Raux, and H are chosen such that a preset steady state value V̂u is
obtained at P̂vc and R̂aux and Ĥ are obtained at P̂as. Thus it has to hold that

V ctrl
u (P̂vc) =

V max
u + V min

u

2
= V̂u,

Rctrl
aux(P̂as) =

Rmax
aux +Rmin

aux

2
= R̂aux,

Hctrl(P̂as) =
Hmax +Hmin

2
= Ĥ.

(2.31)
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Figure 2.3: The sigmoidal functions V ctrl
u (a), Rctrl

aux (b) and Hctrl (c) defined by (2.30) with P̂vc = 7.5
mmHg, P̂as = 87.7 mmHg and other parameters as given in Appendix A.3.

Note that the maximum and minimum values of Vu, Raux and H are not determined
uniquely by (2.31) which can make parameter identification using experimental data diffi-
cult (parameter identification with a related model using similar controls was carried out
in [5]). The asymptotic values of the sigmoids are given by

V ctrl
u (Pvc)→

{
(V max

u − V min
u ) · 0 + V min

u = V min
u , forPvc → 0,

(V max
u − V min

u ) · 1 + V min
u = V max

u forPvc →∞,

Rctrl
aux(Pas)→

{
(Rmax

aux −Rmin
aux ) · 1 +Rmin

aux = Rmax
aux , forPas → 0,

(Rmax
aux −Rmin

aux ) · 0 +Rmin
aux = Rmax

aux , forPas →∞,

Hctrl(Pas)→

{
(Hmax −Hmin) · 1 +Hmin = Hmax, forPas → 0,
(Hmax −Hmin) · 0 +Hmin = Hmin, forPas →∞,

thus V ctrl
u is an increasing, Rctrl

aux and Hctrl are decreasing sigmoidal functions (see Fig. 2.3).
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Finally the sigmoids given in (2.30) are used in the following ODEs for u(t) from
system (2.27)

u1 =
−Vu + V ctrl

u

τ1
,

u2 =
−Raux +Rctrl

aux

τ2
,

u3 =
−H +Hctrl

τ3
,

(2.32)

where τi, i = 1, 2, 3 are time constants influencing how long it takes until the full control
response is reached (see [22]). Note that if minimal and maximal values of Vu, Raux and
H are chosen according to (2.31), in steady state, i.e. Vu = V̂u, Raux = R̂aux and H = Ĥ,
the control response is zero, u = 0.

2.2.3 The optimal control

For incorporating an optimal control strategy in the model (2.27) some background from
control theory is required. The basic theoretical principles needed in the context of this
thesis will be briefly presented (following [14, 18, 1] and [23]) to show how they are applied
to the specific problem (similar to [6]).

2.2.3.1 Linearization

Instead of looking at a non linear system such as (2.27) it is often useful to find ap-
proximate solutions of an associated linear model. Let F ∈ C1(Rn × Rm × [t0, t1],Rn),
x ∈ C1([t0, t1],Rn), u ∈ C([t0, t1],Rm) with m < n and x0 be a vector in Rn. Look at x(t)
satisfying

(2.33)

{
ẋ(t) =F(x(t), u(t), t), −∞ < t0 < t ≤ t1 <∞,
x(t0) =x0.

Introducing ”small” perturbations x̃(t), ũ(t) and x̃(t0) we define the neighboring solutions

x̂(t) =x(t) + x̃(t), t0 < t ≤ t1,(2.34)
û(t) =u(t) + ũ(t), t0 ≤ t ≤ t1,(2.35)
x̂(t0) =x(t0) + x̃(t0).(2.36)

Using (2.56) and (2.68) in (2.33) gives

(2.37) ˙̂x(t) = ẋ(t) + ˙̃x(t) = F(x(t) + x̃(t), u(t) + ũ(t), t).

A Taylor expansion of F around (x(t), u(t), t) yields

F(x(t) + x̃(t), u(t) + ũ(t), t) =F(x(t), u(t), t) + Fx(x(t), u(t), t)x̃(t)
+ Fu(x(t), u(t), t)ũ(t) + h(t),

(2.38)

where h(t) ∈ Rn is the remainder term and Fx ∈ Rn×n denotes the Jacobian of F with
respect to x (thus

(Fx)i,j =
∂fi

∂xj
, i, j = 1, ..., n,
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where fi denotes the i-th component of F and xj the j-th component of the state vector x)
and Fu ∈ Rn×m the Jacobian of F with respect to u (analogously). Since h(t) can assumed
to be small for small deviations x̃ and ũ it is omitted from eq. (2.38). Using (2.37) in
(2.38) (note that F(x(t), u(t)) cancels since (2.33) holds) with A = Fx and B = Fu we
obtain the linear system

(2.39) ˙̃x(t) = Ax̃(t) +Bũ(t),

with initial condition x̃(t0) (using eq (2.36)). The system (2.39) is called linearized state
differential equation. It can be shown that if the interval [t0, t1] is finite, the initial per-
turbations x̃(t0) and ũ(t0) are small and the partial derivatives Fxj and Fui are close
to the values of x and u from the original system (2.33) solutions of the linearized state
differential equations can be made arbitrarily good approximations to solutions of (2.33)
(see [18, Sec. 1.2.2]). Therefore we will from now on focus on linear systems.

2.2.3.2 Linear state differential systems

We consider a linear state differential system

(2.40)

{
ẋ(t) =A(t)x(t) +B(t)u(t), a.e. on Ω,

x(t0) =x0,

with Ω = [t0, t1] (−∞ < t0 < t ≤ t1 < ∞, t0 and t1 fixed) and relaxed smoothness-
assumptions on A and B, namely A ∈ L2(Ω,Rn×n) and B ∈ L2(Ω,Rn×m). It can be
shown that for a given control u ∈ L2(Ω,Rm) the state equation (2.40) has a unique
solution x(·) in the sense of Caratheodory. This means x(t0) = x0 ∈ Rn and x(·) is
absolutely continuous, thus it has a derivative almost everywhere (a.e.) on Ω which is in
L2(Ω,Rn) and x(·) satisfies (2.40) a.e on Ω (see [14, Sec. 2]). We collect the absolutely
continuous functions mapping from Ω to Rn in the set AC(Ω,Rn), thus x ∈ AC(Ω,Rn).
We summarize some basic facts on the solution of linear state differential systems which
will be needed later (see for instance [18, Sec. 1.3]1).

Theorem 1. Let x ∈ AC(Ω,Rn), x0 ∈ Rn and A ∈ L2(Ω,Rn×n). Then the solution of
the homogeneous system

(2.41)

{
ẋ(t) =A(t)x(t), a.e on Ω,

x(t0) =x0,

can be written as

(2.42) x(t) = Φ(t, t0)x0,

where Φ ∈ AC(Ω×Ω,Rn×n) is the fundamental matrix solution of the homogeneous system
(2.41), i.e. Φ is the solution of the matrix differential equation

d

dt
Φ(t, t0) =A(t)Φ(t, t0), a.e on Ω,

Φ(t0, t0) =I.

1Though the results given there are stated for continuous right-hand sides the extension to L2-functions
is straightforward.
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The fundamental matrix solution has the following properties which will be useful later.

Lemma 2. Let Φ be the fundamental matrix solution of the homogeneous system (2.41).
Then Φ satisfies

1) Φ(·, t0) is non singular a.e. on Ω.

2) Φ(·, t0)−1 = Φ(t0, ·) a.e on Ω.

3)
d

dt
Φ(t0, t)> = −A(t)>Φ(t0, t)> a.e. on Ω.

Though the solution to any homogeneous system (2.41) satisfying the assumptions given
in Theorem 1 is given by (2.42) the fundamental matrix solution is of limited practi-
cal value since it can very seldom be obtained directly in terms of standard functions
(see [18, Sec. 1.3]). However, the fundamental matrix solution has great theoretical bene-
fits of which will be made use of later. If the fundamental matrix solution of the homoge-
neous system is known it is straightforward to give a representation of the solution to the
state differential system (2.40) (compare [18, Sec. 1.3]).

Theorem 3. Let x ∈ AC(Ω,Rn), x0 ∈ Rn, A ∈ L2(Ω,Rn×n), B ∈ L2(Ω,Rn×m) and
u ∈ L2(Ω,Rm). Then the solution of (2.40) is given by

x(t) = Φ(t, t0)x(t0) +
ˆ t

t0

Φ(t, τ)B(τ)u(τ) dτ.

2.2.3.3 The finite-time horizon LQR-problem

The finite-time linear-quadratic optimal regulator problem is the task of finding a control
u(·) that drives the linear system (2.40) from any given initial condition x0 to the zero
state, i.e. x = 0, as fast as possible. We formulate this problem using an optimization
approach: we want to minimize some criterion such that x(t1) = 0. There are many ways
to get suitable criteria for this problem. Since we deal with L2-functions a natural criterion
for x is to minimize some weighted L2-norm:

(2.43)
ˆ t1

t0

x(t)>Q(t)x(t) dt,

where Q(t) ∈ Rn×n is a weighting matrix. This criterion penalizes overall aberrations of
x from the zero state on the interval Ω. The matrix Q(·) determines whether deviations
in some components of x are respected more or less (if all components are considered to
be equally important then for all t ∈ Ω : Q(t) = I). However, minimizing (2.43) can
lead to indefinitely large control responses u(t) (see [18, Sec. 3.3.1]), thus this has to be
compensated by including u in the criterion as well:

(2.44)
ˆ t1

t0

x(t)>Q(t)x(t) + u(t)>R(t)u(t) dt,

where R(t) ∈ Rm×m is a weighting matrix too. It may occur that the time interval [t0, t1]
is too short to get x(t1) = 0, thus a natural claim is that the system should be as close as
possible to the zero state at the final time t = t1. Therefore (2.44) is finally expanded to

ˆ t1

t0

(
x(t)>Q(t)x(t) + u(t)>R(t)u(t)

)
dt+ x(t1)>Sx(t1),
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with S ∈ Rn×n. Before we sum up these considerations in a definition we make some
assumptions on Q(·), R(·) and S which will be needed in the course of deriving the solution
to the depicted problem (taken from [14, Sec. 7]).

Assumption 4.

1) The matrix Q ∈ L2(Ω,Rn×n) is symmetric and positive semi-definite a.e. on Ω.

2) S ∈ Rn×n is symmetric and positive semi-definite.

3) R ∈ L2(Ω,Rm×m) is symmetric a.e. on Ω and there exists α ∈ L2(Ω,R) with α(t) ≥ 0
a.e. on Ω and 1/α ∈ L2(Ω,R). Furthermore for all v ∈ Rm the following estimate
holds a.e. on Ω

v>R(t)v ≥ α(t) ‖v‖22 .

Note that Assumption 4.3) implies the following: Since α(t) ≥ 0 a.e. on Ω and
1/α ∈ L2(Ω,R) it follows that α(t) > 0 a.e. on Ω (this can be proved by contradic-
tion: assume that α(t) = 0 a.e. on Ω, then the assumption 1/α ∈ L2(Ω,R) is violated).
Furthermore

v>R(t)v ≥ α(t) ‖v‖22 , a.e. on Ω,

implies that (using α(t) > 0 a.e. on Ω)

‖R(t)v‖2 ≥ α(t) ‖v‖2 > 0, a.e. on Ω, for v ∈ Rm\{0},

which means that R(t)−1 exists a.e. on Ω satisfying∥∥R(t)−1v
∥∥

2
≤ 1
α(t)

‖v‖2 , a.e. on Ω, with v ∈ Rm.

Now everything is set up to define the regulator problem.

Definition 5. Consider x ∈ AC(Ω,Rn) and u ∈ L2(Ω,Rm) obeying (2.40) with
A ∈ L2(Ω,Rn×n), B ∈ L2(Ω,Rn×m) and Q(·), R(·) and S satisfying Assumption 4. The
linear-quadratic (optimal) regulator problem (LQR-problem) is the task of solving the min-
imization problem

inf
u∈L2(Ω,Rm)

J(u, x0),

with

(2.45) J(u, x0) =
ˆ t1

t0

(
x(t)>Q(t)x(t) + u(t)>R(t)u(t)

)
dt+ x(t1)>Sx(t1).

The cost functional J is also called performance index depending on the initial state x0

and the control u(·).

We will show that the infimum in Definition 5 is achieved: the minimizer is the so-called
optimal control û(·), the value of the cost functional at the minimizer J(û, x0) is called
optimum performance index. The next result shows that û(·) is the unique solution to the
regulator problem: it is given by a linear feedback law with a feedback matrix determined
by the solution of a matrix Riccati differential equation.
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Theorem 6. The LQR-problem as stated in Definition 5 has a unique solution û(·) called
optimal control. This solution is determined by a linear feedback law

û(t) = K(t)x̂(t), t ∈ Ω,

with K(t) = −R(t)−1B(t)>P (t). P (·) is the unique positive semi-definite solution of the
matrix Riccati differential equation{

−Ṗ (t) =P (t)A(t) +A(t)>P (t)− P (t)B(t)R(t)−1B(t)>P (t) +Q(t), , t0 ≤ t < t1,

P (t1) =S,

and x̂(·) being the solution to the closed loop system{
˙̂x(t) = (A(t) +B(t)K(t)) x̂(t), t0 < t ≤ t1,
x̂(t0) =x0.

Finally the optimal performance index is given by

J(û, x0) = (x0)>P (t0)x0.

Proof. The proof given here is mainly taken from [14, Sec. 7] with some extensions adopted
from [18, Sec. 3.3.2], [23, Sec. 8.2] and [1, Sec. 2.3]. We divide it into the following steps:

1. Derivation of a necessary and sufficient condition for û being a minimizer of J .

2. If û exists then it is given by a linear feedback law.

3. The computation of the feedback matrixK(t) involves the solution of a matrix Riccati
differential equation.

4. The optimal performance index is given by a quadratic form.

1. A criterion for optimality of a control We will make use of some techniques
from the calculus of variations. Assume that an optimal û ∈ L2(Ω,Rm) exists for a given
x0 ∈ Rn and let x̂ ∈ AC(Ω,Rn) be the associated solution of (2.40). For ε > 0 and
v ∈ L2(Ω,Rm) a variation u(·) of û(·) is given by

u(·) = û(·) + εv(·).

Now let x(·) be the solution of (2.40) corresponding to the variation u(·). Due to the
linearity of (2.40) we can assume that

x(·) = x̂(·) + εx̃(·),

with some x̃(·), which has to be specified. Plugging x into (2.40) we get

(2.46) ˙̂x(t) + ε ˙̃x(t) = A(t)x̂(t) + εA(t)x̃(t) +B(t)û(t) + εB(t)v(t).

Looking at the optimal state x̂ alone yields

(2.47) ˙̂x(t) = A(t)x̂(t) +B(t)û(t).
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By subtracting (2.47) from (2.46) we see that

˙̃x(t) = A(t)x̃(t) +B(t)v(t),

thus x̃ is the state associated to v. However, since the initial state is not affected by
variations of û we have x(t0) = x̂(t0) + εx̃(t0) = x0, thus x̃(t0) = 0. Evaluating the
performance index J at the variation u = û+ εv yields (using the symmetry of Q(·), R(·),
and S guaranteed by Assumption 4)

J(û+ εv, x0) =
ˆ t1

t0

(
(x̂(t) + εx̃(t))>Q(t)(x̂(t) + εx̃(t))+

(x̂(t) + εx̃(t))>R(t)(x̂(t) + εx̃(t)) dt
)

+

(x̂(t1) + εx̃(t1))>S(x̂(t1) + εx̃(t1))

=
ˆ t1

t0

x̂(t)>Q(t)x̂(t) + û(t)>R(t)û(t) dt+ x̂(t1)>Sx̂(t1)+

2ε
(ˆ t1

t0

x̃(t)>Q(t)x̂(t) + v(t)>R(t)û(t) dt+ x̃(t1)>Sx̂(t1)
)

+

ε2

(ˆ t1

t0

x̃(t)>Q(t)x̃(t) + v(t)>R(t)v(t) dt+ x̃(t1)>Sx̂(t1)
)

=J(û, x0)+

2ε
(ˆ t1

t0

x̃(t)>Q(t)x̂(t) + v(t)>R(t)û(t) dt+ x̃(t1)>Sx̂(t1)
)

+

ε2J(v, 0).

(2.48)

Now let g(ε) = J(û + εv). We assumed that û is the optimal control, thus the variation
u = û + εv will necessarily increase the value of the performance index J . Therefore g
attains its minimum at ε = 0. Since g is quadratic it has to hold that

d

dε
g(ε)

∣∣∣∣
ε=0

= 0,

or equivalently

(2.49)
ˆ t1

t0

x̃(t)>Q(t)x̂(t) + v(t)>R(t)û(t) dt+ x̃(t1)>Sx̂(t1) = 0,

which is a necessary condition for û to be optimal. It is left to show that (2.49) is sufficient
as well. Conversely let ε = 1 and v 6= 0. Using (2.49) in (2.48) yields

(2.50) J(û+ v, x0) = J(û, x0) + J(v, 0).

According to Assumption 4, Q(·) is positive semi-definite a.e. on Ω and S is positive
semi-definite. Thus we can estimate

ˆ t1

t0

x̃(t)>Q(t)x̃(t) dt+ x̃(t1)>Sx̂(t1) ≥ 0.
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This together with Assumption 4.3) (and its consequence α(t)>0 a.e. on Ω) yields further
(remember that we assumed v 6= 0)

(2.51) J(v, 0) ≥
ˆ t1

t0

v(t)>R(t)v(t) dt ≥
ˆ t1

t0

α(t) ‖v‖22 dt > 0.

Now let u ∈ L2(Ω,Rm) be arbitrary. With v = u− û ∈ L2(Ω,Rm) we finally obtain using
(2.51) and (2.50)

J(u, x0) = J(û+ v, x0) = J(û, x0) + J(v, 0) > J(û, x0).

This shows that (2.49) is not only necessary but also sufficient for û to be optimal.

2. The optimal control is given by a linear feedback law We make again use of
the variations introduced in Step 1. According to Theorem 3 the solution x̃ of (2.40) with
control v and initial condition x̃(t0) = 0 can be written in terms of the fundamental matrix
solution

x̃(t) =Φ(t, t0)x̃(t0) +
ˆ t

t0

Φ(t, τ)B(τ)v(τ) dτ

=
ˆ t

t0

Φ(t, τ)B(τ)v(τ) dτ.

Using this representation of x̃ in (2.49) yields (using Fubini’s theorem and factorizing v>

and B>)

0 =
ˆ t1

t0

(ˆ t

t0

Φ(t, τ)B(τ)v(τ) dτ
)>

Q(t)x̂(t) + v(t)>R(t)û(t) dt

+
(ˆ t1

t0

Φ(t1, τ)B(τ)v(τ) dτ
)>

Sx̂(t1)

=
ˆ t1

t0

v(t)>
(
B(t)>

(ˆ t1

t
Φ(τ, t)>Q(τ)x̂(τ) dτ + Φ(t1, t)>Sx̂(t1)

)
+R(t)û(t)

)
dt.

Introducing the abbreviation

(2.52) p(t) =
ˆ t1

t
Φ(τ, t)>Q(τ)x̂(τ) dτ + Φ(t1, t)>Sx̂(t1),

we conclude

(2.53)
ˆ t1

t0

v(t)>
(
B(t)>p(t) +R(t)û(t)

)
dt = 0.

According to Step 1 (2.49) is sufficient for û to be optimal. Thus (2.53) has to hold for all
v ∈ L2(Ω,Rm) which means

B(t)>p(t) +R(t)û(t) = 0 a.e. on Ω,

and therefore we obtain the feedback law (note that Assumption 4 3 implies that R(t)−1

exists a.e. on Ω)

(2.54) û(t) = −R(t)−1B(t)>p(t) a.e. on Ω.
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As soon as p(t) is determined (2.54) gives the optimal control at time t. Hence we transform
the representation (2.52) into a differential equation for p(t):

ṗ(t) =
d

dt

(
−
ˆ t

t1

Φ(τ, t)>Q(τ)x̂(τ) dτ + Φ(t1, t)>Sx̂(t1)
)

=− Φ(t, t)>Q(t)x̂(t) +
∂

∂t
Φ(t1, t)>Sx̂(t1) +

ˆ t1

t

∂

∂t
Φ(τ, t)>Q(τ)x̂(τ) dτ.

Since Φ is the fundamental matrix solution of (2.40) with control v and initial condition
x̃(t0) = 0 we can make use of its properties pointed out in Lemma 2.3)

ṗ(t) =−Q(t)x̂(t)−A(t)>Φ(t1, t)>Sx̂(t1)−A(t)>
ˆ t1

t
Φ(τ, t)>Q(τ)x̂(τ) dτ

=−Q(t)x̂(t)−A(t)>
(ˆ t1

t
Φ(τ, t)>Q(τ)x̂(τ) dτ + Φ(t1, t)>Sx̂(t1)

)
=−Q(t)x̂(t)−A(t)>p(t),

(2.55)

where we employed again relation (2.52) for p(t). Furthermore using the feedback law
(2.54) for the optimal control û in the state differential equations (2.40) results in

(2.56) ˙̂x(t) = A(t)x̂(t)−B(t)R(t)−1B(t)>p(t).

Equations (2.55) and (2.56) form a set of 2n simultaneous linear differential equations
in the two n-dimensional unknowns x̂(t) and p(t). Using the initial condition for x̂ and
evaluating relation (2.52) for p(t) at t = t0 gives the boundary conditions

x̂(t0) =x0,

p(t1) =Φ(t1, t1)>Sx̂(t1) = Sx̂(t1).(2.57)

This can be written compactly as

(2.58)


( ˙̂x(t)
ṗ(t)

)
=
(

A(t) −B(t)R(t)−1B(t)>

−Q(t) −A(t)>

)(
x̂(t)
p(t)

)
,

x̂(t0) =x0,

p(t1) =Sx̂(t1),

thus we are faced with a two-point boundary value problem. The system (2.58) is called
variational equations and p(t) is the adjoint variable. For solving problem (2.58) we will
use its fundamental matrix solution which we denote by Θ(t, t0) ∈ R2n×2n and partition it
into four n× n-blocks

Θ(t, t0) =
(

Θ11(t, t0) Θ12(t, t0)
Θ21(t, t0) Θ22(t, t0)

)
.

According to Theorem 1 we can express the unknowns (x̂(t), p(t))> in terms of Θ(·, t1) and
the terminal values (x̂(t1), p(t1))>(

x̂(t)
p(t)

)
=
(

Θ11(t, t1) Θ12(t, t1)
Θ21(t, t1) Θ22(t, t1)

)(
x̂(t1)
p(t1)

)
.
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Using the terminal condition (2.57) yields

x̂(t) =Θ11(t, t1)x̂(t1) + Θ12(t, t1)Sx̂(t1)
= (Θ11(t, t1) + Θ12(t, t1)S) x̂(t1),

and analogously

(2.59) p(t) = (Θ21(t, t1) + Θ22(t, t1)S) x̂(t1).

We use the abbreviation

(2.60) Θ̃(·, t1) = (Θ11(·, t1) + Θ12(·, t1)S) .

We see that (note, according to Assumption 4.2) S is positive semi-definite)

Θ̃1(t, t1)
∣∣∣
t=t1

= (Θ11(t, t1) + Θ12(t, t1)S)|t=t1
= (I + I · S),

is invertible. Since the fundamental matrix solution is (absolutely) continuous there exists
s0 < t1 such that Θ̃1(·, t1) is invertible at least on (s0, t1]. Hence we can express x̂(t1) on
(s0, t1] as

x̂(t1) = Θ̃1(t, t1)−1x̂(t).

Plugging this into (2.70) gives

p(t) = (Θ21(t, t1) + Θ22(t, t1)S) Θ̃1(t, t1)−1x̂(t), t ∈ (s0, t1].

Introducing the n× n-matrix

(2.61) P (t) = (Θ21(t, t1) + Θ22(t, t1)S) Θ̃1(t, t1)−1, t ∈ (s0, t1],

we can write p(t) as
p(t) = P (t)x̂(t), t ∈ (s0, t1].

Employing this relation in the expression (2.54) and setting

K(t) = −R(t)−1B(t)P (t), t ∈ (s0, t1],

finally gives the promised linear feedback law for the optimal control at least on the interval
(s0, t1]:

(2.62) û(t) = K(t)x̂(t), t ∈ (s0, t1].

3. The linear feedback law leads to a Riccati equation The feedback matrix K(t)
appearing in the linear feedback law (2.62) derived in Step 2 involves some matrix P (t)
which is given in terms of the fundamental matrix solution of the variational equations
(2.58) on some interval (s0, t1]. The goal in this part of the proof is to give a more
applicable representation of P (t) on the whole interval Ω.
We start by collecting some information about the time-derivative of an inverted matrix
function: let M(t) ∈ Rn×n be invertible. By differentiating the identity M(t)M(t)−1 = I
we get

Ṁ(t)M(t)−1 +M(t)Ṁ(t)−1 =0

Ṁ(t)−1 =−M(t)−1Ṁ(t)M(t)−1.(2.63)
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Applying (2.63) on Θ̃1(·, t1) in the course of differentiating (2.61) we obtain for t ∈ (s0, t1]

Ṗ (t) =
d

dt

(
(Θ21(t, t1) + Θ22(t, t1)S) Θ̃1(t, t1)−1

)
=
(

Θ̇21(t, t1) + Θ̇22(t, t1)S
)

Θ̃1(t, t1)−1

+ (Θ21(t, t1) + Θ22(t, t1)S) ˙̃Θ1(t, t1)−1

=
(

Θ̇21(t, t1) + Θ̇22(t, t1)S
)

Θ̃1(t, t1)−1

− (Θ21(t, t1) + Θ22(t, t1)S) Θ̃1(t, t1)−1 ˙̃Θ1(t, t1)Θ̃1(t, t1)−1,

(2.64)

and by using relation (2.60)

(2.65) ˙̃Θ1(t, t1) =
(

Θ̇11(t, t1) + Θ̇12(t, t1)S
)

According to Theorem 1 Θ(·, t1) as the fundamental matrix solution of the variational
equations (2.58) satisfies the matrix differential equation

Θ̇(t, t1) =
(

A(t) −B(t)R(t)−1B(t)>

−Q(t) −A(t)>

)
Θ(t, t1),

which can be written as (using the introduced partitioning of Θ)

Θ̇11(t, t1) =A(t)Θ11(t, t1)−B(t)R(t)−1B(t)>Θ21(t, t1),

Θ̇12(t, t1) =A(t)Θ12(t, t1)−B(t)R(t)−1B(t)>Θ22(t, t1),

Θ̇21(t, t1) =−Q(t)Θ11(t, t1)−A(t)>Θ21(t, t1),

Θ̇22(t, t1) =−Q(t)Θ12(t, t1)−A(t)>Θ22(t, t1).

Using this in (2.64) and (2.65) and setting t = t1 in (2.61) we obtain the following Cauchy
problem

(2.66)


Ṗ (t) +Q(t) +A(t)>P (t) + P (t)A(t)

−P (t)B(t)R(t)−1B(t)>P (t) =0, t ∈ (s0, t1),
P (t1) =S,

which is the so-called Riccati matrix differential equation. The basic existence theorem for
the Riccati matrix differential equation (see for instance [23, Theorem 42]) guarantees the
existence of a unique symmetric positive semi-definite solution P (t) of (2.66) not only on
(s0t1] but on the whole interval Ω provided that Assumption 4 is satisfied.
Using the solution P (t) of (2.66) in the feedback matrix

(2.67) K(t) = −R(t)−1B(t)>P (t),

and setting

(2.68) û(t) = K(t)x̂(t), t ∈ Ω,

where x̂ is the solution to

(2.69)

{
˙̂x(t) = (A(t) +B(t)K(t)) x̂(t), t0 < t ≤ t1,
x̂(t0) =x0,
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we will show that criterion (2.49) derived in Step 1 is satisfied, hence û is the unique
solution of the LQR-problem. Let

(2.70) p(t) = P (t)x̂(t), t ∈ Ω,

then by differentiating (2.66) and using (2.69) we obtain for t ∈ Ω

ṗ(t) =Ṗ (t)x̂(t) + P (t) ˙̂x(t)

=
(
−Q(t)−A(t)>P (t)− P (t)A(t) + P (t)B(t)R(t)−1B(t)>P (t)

)
x̂(t)

+ P (t)
(
A(t)−B(t)R(t)−1B(t)>P (t)

)
x̂(t)

=−Q(t)x̂(t)−A(t)>P (t)x̂(t)
=−Q(t)x̂(t)− p(t)x̂(t),

(2.71)

and by setting t = t1 in (2.70)

(2.72) p(t1) = Sx̂(t1).

As in the beginning of Step 2 we use again the solution x̃ of (2.40) with control v and
initial condition x̃(t0) = 0 which using the fundamental matrix solution can be written as

(2.73) x̃(t) =
ˆ t

t0

Φ(t, τ)B(τ)v(τ) dτ, t ∈ Ω.

According to Lemma 2 the fundamental matrix solution of ṗ(t) = −A(t)>p(t) is given by
Φ(t1, ·)>. Thus using Theorem 3 for (2.71) together with (2.72) yields

p(t) =Φ(t1, t)>p(t1) +
ˆ t1

t
Φ(τ, t)>Q(τ)x̂(τ) dτ

=Φ(t1, t)>Sx̂(t1) +
ˆ t1

t
Φ(τ, t)>Q(τ)x̂(τ) dτ, t ∈ Ω.

(2.74)

From the fact that (2.68) is equivalent to (using (2.70))

R(t)û(t) +B(t)>p(t) = 0, t ∈ Ω,

follows ˆ t1

t0

v(t)>
(
R(t)û(t) +B(t)>p(t)

)
dt = 0.

Substituting the derived representation (2.74) for p and using Fubini’s theorem yields

0 =
ˆ t1

t0

v(t)>
(
R(t)û(t) +B(t)>

(
Φ(t1, t)>Sx̂(t1) +

ˆ t1

t
Φ(τ, t)>Q(τ)x̂(τ) dτ

))
dt

=
ˆ t1

t0

v(t)>R(t)û(t) dt+
(ˆ t1

t0

Φ(t1, t)B(t)v(t) dt
)>

Sx̂(t1)

+
ˆ t1

t0

(ˆ t

t0

Φ(t, τ)B(τ)v(τ) dτ
)>

Q(t)x̂(t) dt.

Finally employing relation (2.73) for x̃ shows that criterion (2.49) is satisfied

0 =
ˆ t1

t0

v(t)>R(t)û(t) dt+ x̃(t1)>Sx̂(t1) +
ˆ t1

t0

x̃(t)Q(t)x̂(t) dt,

meaning that û as given by (2.68) depending on the solution of the Riccati matrix differ-
ential equation (2.66) is the unique solution of the LQR-problem.
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4. The quadratic form of the optimal performance index We define a function
H(t) depending on the lower bound of the performance index J :

H(t) =
ˆ t1

t

(
x(τ)>Q(τ)x(τ) + u(τ)>R(τ)u(τ)

)
dτ + x(t1)>Sx(t1).

Let x0 ∈ Rn and t ∈ R be fixed. Furthermore let K ∈ L2(Ω,Rm×n) and u(t) = K(t)x(t),
t ∈ Ω. Then h is of the form

H(t) =
ˆ t1

t
x(τ)>

(
Q(τ) +K(τ)>R(τ)K(τ)

)
x(τ) dτ + x(t1)>Sx(t1),

thus we assume that

(2.75) H(t) = x(t)>W (t)x(t), t ∈ Ω,

for some symmetric positive semi-definite matrix W (·) ∈ Rn×n (note that according to
Assumption 4, Q(·), R(·) and S are symmetric and at least positive semi-definite). Hence

(2.76) x(t)>W (t)x(t) =
ˆ t1

t
x(τ)>

(
Q(τ) +K(τ)>R(τ)K(τ)

)
x(τ) dτ + x(t1)>Sx(t1).

Differentiating gives (where we use (2.40), u(·) = K(·)x(·) and the symmetry of W (·))

x(t)>Ẇ (t)x(t) =− 2x(t)>W (t)ẋ(t)− x(t)>
(
Q(t) +K(t)>R(t)K(t)

)
x(t)

=− 2x(t)> (W (t)A(t) +W (t)B(t)K(t))x(t)

− x(t)>
(
Q(t) +K(t)>R(t)K(t)

)
x(t)

=− (W (t)x(t))>A(t)x(t)− x(t)>W (t)A(t)x(t)−

x(t)>
(

2W (t)B(t)K(t) +Q(t) +K(t)>R(t)K(t)
)
x(t)

=x(t)>
(
−A(t)>W (t)−W (t)A(t)

−2W (t)B(t)K(t)−Q(t)−K(t)>R(t)K(t)
)
x(t).

Since this is valid for any x and both sides are symmetric we get

Ẇ (t) = −A(t)>W (t)−W (t)A(t)− 2W (t)B(t)K(t)−Q(t)−K(t)>R(t)K(t).

Let K(·) be the feedback matrix (2.67) then (note that P (·) is symmetric)

Ẇ (t) =−A(t)>W (t)−W (t)A(t) + 2W (t)B(t)R(t)−1B(t)>P (t)−Q(t)

− P (t)B(t)R(t)−1B(t)>P (t).
(2.77)

Setting t = t1 in (2.76) gives

(2.78) x(t1)>W (t1)x(t1) = x(t1)>Sx(t1) ⇒ W (t1) = S.

Writing the matrix Riccati differential equation (2.80) as

Ṗ (t) =−A(t)>P (t)− P (t)A(t) + 2P (t)B(t)R(t)−1B(t)>P (t)−Q(t)

− P (t)B(t)R(t)−1B(t)>P (t),
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together with (2.77) andW (t1) = S = P (t1) yieldsW (·) = P (·). Thus using (2.75) follows

J(û, x0) = h(t0)|u=û = x(t0)>P (t0)x(t0) = (x0)>P (t0)x0,

which ends the proof.

Having deduced a solution to the LQR-problem for bounded Ω = [t0, t1] with
−∞ < t0 < t1 <∞ we will now investigate the case t1 →∞.

2.2.3.4 The infinite-time horizon LQR-problem

In many applications it is very difficult or even impossible to steer a system to the zero-
state in finite time: if the deviation of the initial condition x0 from the zero-state is large
then t1 has to be chosen sufficiently large as well (see for instance [18, Sec. 3.4]). This
motivates the extension of Theorem 6 to infinite end-times t1. We will focus now on linear
time-invariant state differential systems, i.e. A(·) ≡ A ∈ Rn×n and B(·) ≡ B ∈ Rn×m,
with a so-called output y(·), thus we consider systems of the form

(2.79)


ẋ(t) =Ax(t) +Bu(t), t > t0,

y(t) =Cx(t), t ≥ t0,
x(t0) =x0,

where C ∈ Rk×n with k ≤ n. It is often not possible to retrieve information about the
complete state vector x(·) of a system. Instead one only has access to some function
of k components of x(·) which are given by the output y(·). Consider for instance the
human CVS: except for arterial blood pressure (Pas), heart rate (H) and (via invasive
measurement) central venous pressure (Pvc or Pavc) it is very difficult to measure other
state variables such as resistances or organic blood pressures.
Since we are concerned with time-invariant systems we furthermore set Q(·) ≡ Q0 ∈ Rn×n

and R(·) ≡ R0 ∈ Rm×m, where Q0 is symmetric and positive semi-definite and R0 is
symmetric and positive definite. Let S ∈ Rn×n be positive semi-definite then for Q0, R0

and S Assumption 4 is satisfied and according to Theorem 6 there exists an optimal control
u(·) = K(·)x(·) for system (2.79) minimizing the cost functional

J(u, x0) =
ˆ t1

t0

(
x(t)>Q0x(t) + u(t)>R0u(t)

)
dt+ x(t1)>Sx(t1).

The Riccati matrix differential equation for this problem is is given by

(2.80)

{
Ṗ (t) +Q0 +A>P (t) + P (t)A− P (t)BR−1

0 B>P (t) =0, t ∈ [t0, t1),
P (t1) =S,

which means its solution P (t) and hence the feedback matrix K(t) = −R−1
0 B>P (t),

t ∈ [t0, t1] of the optimal control is still time dependent, although we started from a
time-invariant system and weighting matrices Q0, R0 and S. So let us assume that
there exists some constant matrix P̄ which solves the Riccati matrix differential equa-
tion (2.80), i.e. P̄ is an equilibrium solution of (2.80) which implies that P̄ is pos-
itive semi-definite. If additionally P̄ = S then the feedback matrix is constant, i.e.
K = −R−1

0 B>P̄ , and determines the optimal control for any given end-time t1 > t0 (see
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for instance [18, Sec. 3.4]). These considerations naturally lead to investigation of the case
t1 →∞ both in the cost functional and in the Riccati matrix differential equation (2.80).
Let from now on be t0 = 0. As we did in the finite-time horizon case we formulate an
assumption on the matrices appearing in the cost functional.

Assumption 7. Let the matrix Q0 ∈ Rn×n be symmetric and positive semi-definite and
R0 ∈ Rm×m be symmetric and positive definite

We define the following problem.

Definition 8. Consider system (2.79) with x ∈ AC([0,∞),Rn), u ∈ L2([0,∞),Rm) and
Q0 and R0 satisfying Assumption 7. The infinite-time horizon linear-quadratic (optimal)
regulator problem (ILQR-problem) is the task of solving the minimization problem

inf
u∈L2([0,∞),Rm)

J∞(u, x0),

with

(2.81) J∞(u, x0) =
ˆ ∞

0
x(t)>Q0x(t) + u(t)>R0u(t) dt.

Note that since we consider the asymptotic behavior t1 → ∞ it is no longer necessary to
impose a penalty term on x(t1) in (2.81) as was the issue in (2.45). In contrast to the
case t1 < ∞ the existence of the performance index (2.81) is not automatically guaran-
teed: Since u ∈ L2([0,∞),Rm) the second term in the integral is bounded but the first
term involving the state x(·) may not exist. For guaranteeing existence of (2.81) sys-
tem (2.79) has to meet additional requirements which leads to the following concepts (see
for instance [18, Definition 1.11]).

Definition 9. Let x0, x1 ∈ Rn and t0 ∈ R be arbitrary. The system (2.79) is called
completely controllable if for any initial state x0 at any time t0, i.e. x(t0) = x0, there
exists ∞ > t1 > t0 and u ∈ L2([t0, t1],Rm) such that the system can be transferred to any
terminal state x1 with x(t1) = x1.

In the case of completely controllable time invariant systems the following result can be
established (taken from [14, Corollary 14]).

Lemma 10. Let the system (2.79) be completely controllable. Then there exists a feedback
law u(t) = Kx(t) such that solution of the closed loop system{

ẋ(t) = (A+BK)x(t), t > 0,

x(0) = x0,

obeys
‖x(t)‖ ≤Meωt,

with some constants M ≥ 1 and ω < 0.

Proof. A similar result is proven in [23, Proposition 5.5.6].

Now we can conclude that if system (2.79) is completely controllable then according to
Lemma 10 x(·) is exponentially bounded thus the cost functional (2.81) exists. However,
we still have to determine under which condition a steady state solution P̄ of (2.80) exists
and if this solution is identical to the limit (if existent) of the solution P (t) of(2.80) as
t1 →∞. We will use the following property (see [18, Sec. 1.7]).

39



2 The Mathematical Model

Definition 11. Let x0, x̄0 ∈ Rn and t0 ∈ R be arbitrary. The system (2.79) is called
completely observable if for all t0 there exists ∞ > t1 > t0 such that the output y(·)
of system (2.79) with initial condition x0 and output ȳ(·) of system (2.79) with initial
condition x1 equalize, i.e.

y(t) = ȳ(t), t0 ≤ t ≤ t1,

for all u ∈ L2([t0, t1],Rm) implies x0 = x̄0.

The following result finally guarantees the solvability of the ILQR-problem provided that
system (2.79) is completely controllable and completely observable.

Theorem 12. Let system (2.79) be completely controllable and completely observable.
Then the so-called algebraic Riccati matrix equation

A>P̄ + P̄A− P̄BR−1
0 B>P̄ +Q0 = 0,

has exactly one positive semi-definite solution P̄ and

û(t) = Kx̂(t), t ≥ 0,

with K = −R−1
0 B>P̄ and x̂(·) being the solution of the closed loop system{

˙̂x(t) =(A+BK)x̂(t), t > 0,

x̂(0) =x0,

is the unique solution of the ILQR-problem as stated in Definition 8. Finally the optimal
performance index is given by

J∞(û, x0) = (x0)>P̄ x0.

Proof. Note that this result can be established with weaker assumptions on the system
(2.79), namely stabilizability and detectability, see for instance [23, Theorem 41].

Having all needed theoretical results at hand we will now apply the ILQR-formulation to
the introduced model (2.24).

2.2.3.5 The ILQR-setup of the model

We want to apply an optimal control approach to model (2.24) which we write in the
form (2.27). Assume that the model is in an initial resting equilibrium xrest (the necessary
computations are depicted in Appendix A.2) when orthostatic stress is applied . We want
to find a control û that steers the system from the initial state xrest at time t0 = 0 to a
new equilibrium xstress corresponding to the imposed orthostatic stress. As was stated in
Sec. 2.2.3.3 the optimal control is designed to bring a system from any given initial state
x0 to the zero-state x = 0. Thus for using the previously deduced results we have to
introduce the state transformation

ξ(t) = x(t)− xstress ∈ R16.

Since unstressed volume Vu, heart rate H and the net change in vasoconstriction Raux shall
be controlled simultaneously it is a priori not clear how to choose a reasonable end-time
t1 at which the zero state ξ(t1) = x(t1) − xstress = 0 has to be reached for any level of
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orthostatic stress. Hence we will treat the given task as ILQR-problem. As stated above we
consider the baroreflex to be the only global short term control mechanism counteracting
orthostatic stress. Hence we assume that û is generated based on measurements of arterial
blood pressure by high pressure sensors in the aortic arch and information of low pressure
sensors monitoring central venous pressure. Thus we consider Pas and a composite of Pvc

and Pavc as inputs for û. This implies the output equation

y(t) = Cx(t),

with

(2.82) C =

 qas · e>1
qvc · e>7
qavc · e>9

 ∈ R3×16,

where ei denotes the i-th canonical basis vector in R16 and the scalars qas, qvc and qavc are
positive weights corresponding to Pas, Pvc and Pavc. Since system (2.27) is non linear we
linearize the model around the final steady state xstress (as explained in Sec. 2.2.3.1), i.e.
we linearize (2.27) at ξ = 0 and obtain the linearized state differential equation

(2.83)

{
ξ̇(t) =Aξ(t) +Bu(t), t > 0,
ξ(0) =x(0)− xstress = xrest − xstress,

where A = Fx ∈ R16×16 and B = Fu ∈ R16×3. Let further

(2.84) Q0 = C>C ∈ R16×16,

and

(2.85) R0 = diag(r1, r2, r3) ∈ R3×3,

be a diagonal matrix with ri > 0 for i = 1, 2, 3. Then Assumption 7 is satisfied and
hence the performance index (2.81) exists. Let us further assume that system (2.83) is
completely controllable and completely observable. Then according to Theorem 12 there
exists a unique optimal control

û(t) = Kξ̂(t), t ≥ 0,

that drives the linear system (2.83) from its initial state ξ(0) to the zero state ξ = 0 where
ξ̂ is the solution of the closed loop system{ ˙̂

ξ(t) =(A+BK)ξ̂(t), t > 0,

ξ̂(0) =xrest − xstress.

The question is whether this control is practicable for the non linear system (2.27) as well.
Take

(2.86) û(t) = K(x̂(t)− xstress),

for t ≥ 0 where x̂ is now the solution to the non linear closed loop system{
˙̂x(t) =F(x̂(t),K(x̂(t)− xstress, t), t > 0,
x̂(0) =xrest,
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with F given by (2.27). Then (2.86) is a suboptimal but still stabilizing control for
the non linear system (2.27) provided that

∥∥x̂(t)− xstress
∥∥ and |û(t)| are small enough

(see [6, p. 25]). This together with the fact that linearization is only meaningful in small
neighborhoods of the original non linear system leads to the following concept: since for
instance the transmural pressure of the lower compartments of the model changes as LBNP
is simulated the state of the model may change noticeably and the control response (2.86)
must be updated. Hence the above depicted concept of linearizing system (2.27), comput-
ing a control (2.86) and applying it to the original system is done iteratively (a similar
concept was used in [4]). Starting at an initial resting steady state x(0) = xrest we compute
a steady state xtrans at time ∆t corresponding to the currently applied level of orthostatic
stress. We linearize the model (2.27) around xtrans and compute the optimal control that
drives the linearized system from xrest to xtrans and apply it to the non linear system (2.27).
The end-state of the non linear system at time ∆t is then used as initial condition for the
next step. This procedure is summarized in Algorithm 2.1. Note that in the context of
this thesis this algorithm is only reliable if the computed linearized systems are always
completely controllable and completely observable2.

2As mentioned in the proof of Theorem 12, the assumptions on the linearized systems can be weakened:
it is sufficient if the arising systems are stabilizable and detectable.
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Algorithm 2.1 Iterative ILQR
Consider the matrices C, Q0 and R0 defined by (2.82), (2.84) and (2.85) respectively and
choose ∆t > 0 and N ∈ N. Compute a resting equilibrium xrest of the model (2.27)
according to Appendix A.2 and set x(0) = xrest.
for i = 0 to N

1. Compute the steady state xtrans corresponding to the current level of orthostatic
stress and set ξ(·) = x(·)− xtrans.

2. Linearize the model (2.27) around ξ = 0 which gives the following system

(2.87)

{
ξ̇(t) =Aξ(t) +Bu(t), t > i ·∆t,

ξ(i ·∆t) =x(i ·∆t)− xtrans,

where A = Fx ∈ R16×16 and B = Fu ∈ R16×3.

3. Compute the control û(t) = Kξ̂(t) for the linearized system (2.87) where
K = −R−1

0 B>P̄ with P̄ being the solution to the algebraic Riccati matrix equa-
tion

(2.88) A>P̄ + P̄A− P̄BR−1
0 B>P̄ +Q0 = 0,

and ξ̂ solving the closed loop system{ ˙̂
ξ(t) =(A+BK)ξ̂(t), t > i ·∆t,

ξ̂(i ·∆t) =x(i ·∆t)− xtrans.

4. Set û(t) = K(x̂(t)− xtrans) with x̂ being the solution of the closed loop system{
˙̂x(t) =F(x̂(t),K(x̂(t)− xtrans, t), t > i ·∆t,

x̂(i ·∆t) =x(i ·∆t),

and apply the computed control to the non linear system

ẋ(t) = F(x(t),K(x̂(t)− xtrans), t),

for t > i ·∆t to compute x ((i+ 1) ·∆t).

end for
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All simulations were carried out in MatlabTM 7 (R14) using the inbuilt ODE-solver
ode15s which is a numerical solver for stiff differential equations based on multistep meth-
ods of variable order. The stiffness of model (2.24) made it necessary to decrease maximum
and relative error tolerances from 10−3 and 10−6 down to 10−6 and 10−9 respectively. Al-
gorithm 2.1 was implemented by iteratively employing the Matlab function lqr (found
in the control system toolbox; we used standard options) which numerically computes the
feedback gain matrix K (for details about both routines see [20]). The jacobian matrices
A = Fx ∈ R16×16 and B = Fu ∈ R16×3 appearing in the linearized systems (2.87) were
computed numerically using central finite differences with step length h = 10−9. The used
operating system was openSUSE 11.1 (32 bit, Kernel 2.6.27) running on a HP subnotebook
with 2,0 GHz Intel Core 2 Duo P7350 CPU and 3GB RAM.
Since we consider only the short term behavior of the human CVS, the simulation interval
was chosen to be 25 minutes starting at t0 = 0 min. For better comparison the procedure
of the simulations was identical for all controls: first a resting steady state was computed
(as explained in Appendix A.2) which was used as initial condition for the ODE-model
(2.24). After two minutes of unperturbed simulation the LBNP procedure was started: an
external lower body negative pressure was smoothly increased from 0 to PLBNP [mmHg]
within one minute and maintained until the end of the simulation at t1 = 25 min.

3.1 LBNP Setup

The ’hips’-case (explained in Sec. 1.3) of LBNP is the usual LBNP setup (compare
for instance [15]) and is simulated here. Let ton denote the time of onset of LBNP
(i.e. ton = 2 min). The following sigmoidal function climbing from zero to one on the
interval [ton, ton + 1] was chosen to simulate the smooth increase in external pressure

(3.1) α(t) =
1

1 + e−15(t−ton−1/2)
.

As suggested in [12] the compartments affected by LBNP were chosen to be the lower
limbs (’leg’-compartment) and for simulation of blood shifts in larger veins the vena cava
and abdominal vena cava (’avc’ and ’vc’) were picked. However, at the latter ones only a
reduced external pressure PLBNP is applied (otherwise venous return to the heart would
drop significantly even for low values of PLBNP which is physiologically not meaningful as
explained below). We assume zero atmospheric pressure thus all external pressures applied
to the compartments are zero except for P bias

leg , P bias
avc and P bias

vc which are given by

(3.2) P bias
comp(t) =


0, t < ton,

kLBNP
comp · α(t) · PLBNP, ton ≤ ton + 1,
PLBNP, t > ton + 1,
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where ’comp’ stands for ’leg’, ’avc’ and ’vc’ with kLBNP
leg = 1 and kLBNP

avc = kLBNP
vc =

0.3 (as listed in Appendix A.3) and α(t) given by (3.1). According to literature (see
for instance [12, 7, 19, 3]) low levels of LBNP were chosen to be at PLBNP = −10 mmHg
whereas high levels were simulated by values of PLBNP less than or equals −40 mmHg.

3.2 Parameter Assignments

The compliances of the compartments and initial values of compartmental pressures (as
well as most other model parameters) were chosen according to [12, 16, 6, 15, 13]. Thus we
obtain by employing relation (2.25) a typical total blood volume of 5.5 liters. For better
comparison maximal and minimal values of Vu, Raux, and H were chosen to be identical
for arctan and set point controls (if possible). Thus we assumed maximal and minimal
heart rates Hmax and Hmin of 120 bpm and 40 bpm respectively. In the case of the set
point control for Raux we chose sigmoidal parameters to reflect sympathetic net activation
such that Raux provokes realistic changes in local resistances as given by eq. (2.19). As
explained in Sec. 2.2.1, when employing the arctan controls a maximal value for Raux is
not needed thus we provide only a guesstimate for Rmin

aux . For making it possible to compare
the simulations to results from literature we plot the total peripheral resistance Rs given by
relation (A.3) (its computation is explained in Appendix A.1) instead of Raux. We assume
the initial amount of total unstressed volume to be 60% of the total blood volume (see for
instance [12, 15]). Since we consider recruitable unstressed volume to be located only in the
abdominal region (namely the compartments ’ren’ and ’spl’, see Sec. 2.1.3) we compute the
blood volumes Vren and Vspl of these compartments and set V min

u = Vu(0)−0.6·(Vren+Vspl).
We assume heart rate control to be the most rapid followed by changes in resistance and
finally unstressed volume recruitment (compare [25]). Thus we assume the time constants
for H and Raux in the set point controls (2.32) to be τ3 = 1 and τ2 = 2 respectively and
set τ1 = 30 for Vu. As mentioned in Sec. 2.2.1 the constants appearing in the arctan
controls (2.29) were adopted from [12]. The weights for the optimal control as well as a
list summarizing all used parameters and assigned values are given in Appendix A.3.
The initial steady state was computed by picking Pas and Pvc and calculating all other states
using equilibrium relations (as explained in Appendix A.2). We assumed a resting arterial
blood pressure Pas(0) of 87.7 mmHg and initial venous pressure Pvc(0)
of 7.5 mmHg. Thus for the set point controls we fixed P̂as to be 87.7 mmHg and P̂vc to be 7.5
mmHg. Initial values and units of all state variables are depicted in
Appendix A.2.

3.3 Low-level LBNP

We want to examine whether the three different controls presented here are able to mimic
typically seen reactions to LBNP. Note that variations in these reactions can be huge
between individuals since short term regulation mechanisms in the human body act si-
multaneously leading to similar effects: an increase in local resistance is equivalent to a
decrease in compliance in the same region. Thus we focus on a list of prototype reactions
which is not intended to be exhaustive. Consulting literature we summarize the following:
according to Lucini et al. [19] low-level LBNP (induced in healthy male adults) leads to
a decrease in central venous pressure but has almost no effect on arterial blood pressure
(which is supported by Brown et al. [7]). Additionally Heldt et al. [12] report of only
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Figure 3.1: State variables of the model using the arctan controls with PLBNP = −10 mmHg.

negligible changes in heart rate but an increase in total peripheral resistance. The role of
unstressed volume is still not completely clear but in accordance to Kappel et al. [15] it is
assumed to be decreasing during LBNP.

3.3.1 The arctan-controls

Considering the case of PLBNP = −10 mmHg an exemplary complete (i.e. all 16 state vari-
ables are shown) model output using the arctan controls (2.29) is depicted in
Fig. 3.1, Fig. 3.2 shows the most informative auxiliary variables. As discussed in
Sec. 2.2.1 the arctan controls are designed to maintain initial values of arterial and ve-
nous blood pressures P 0

as and P 0
vc respectively. We see an initial decrease in Pas of about

6% and a drop in Pvc which is more pronounced (-14%). However, heart rate H shows
no significant response (a temporary increase of ca. 2% followed by an even lower value
than at the start of the simulation). So far the behavior of the model is consistent with
physiology. But looking at Rs (Fig. 3.2) we see that the increase in systemic resistance
is negligible as well (the visible growth is less than 1%). The only control which shows a
significant response is Vu due to the larger decrease of Pvc compared to Pas. We see an
immediate drop in unstressed volume of about 13%. Since we assume the only resorts of
recruitable unstressed volume to be the compartments ’ren’ and ’spl’ a similar rebound
in Pspl and (less pronounced) in Pren as in Pas can be observed. Thus the model is sta-
bilized mainly via very fast volume shifts in the abdominal compartments. Though the
exact mode of operation of unstressed volume recruitment is not fully investigated yet (see
for instance [15]) this reaction is unrealistic mainly for two reasons: firstly, volume re-
cruitments of this magnitude (under the assumption made on unstressed volume distri-
bution stated in Sec. 3.2 13% of total unstressed volume represent about 7% of the
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Figure 3.2: Auxiliary variables of the model using the arctan controls with PLBNP = −10 mmHg.

total blood volume) take much longer in the human body (see [24]). Secondly, it is
questionable if LBNP of this level provokes such volume shifts (compare the findings by
Ursino et al. about the relation of carotid sinus pressure and blood volume changes [25],
Kappel et al. [15] come to a similar result when simulating LBNP). Thus the arctan con-
trols need some extensions: one way would be to include a dependency on Pvc into the
equations for H and Raux so that not only Vu is sensitive to changes in Pvc. Another
approach would include a decay in Vu to prevent this control from being too dominant.
The latter is to some extent realized in the set point controls.

3.3.2 The set point controls

Figure 3.3 shows the most interesting model variables using the set point controls (2.32)
under a LBNP of -10 mmHg. The most obvious difference compared to the arctan controls
is the significant response not only of Vu but H and Rs as well. Since the time constant of
Vu was chosen to be τ3 = 30, unstressed volume recruitment takes much longer than with
the arctan controls. This forces heart rate H and resistance Rs to react to the imposed
LBNP as well. The time course of total unstressed volume Vu looks more plausible and we
observe a noticeable (about 10% at minute 3) increase in systemic resistance Rs which was
not seen with the arctan controls. The heart rate reacts with an initial increase of ca. 6%
which declines slowly so that H remains slightly elevated until the end of the simulation.
Arterial blood pressure Pas shows a comparable decrease as it was the case with the arctan
controls though it is not immediately recovered. The drop of the venous pressures Pvc

and Pavc is more pronounced and cannot be stabilized immediately so that both pressures
stay below their initial values for the rest of the simulation. This is mainly due to the
fact that unstressed volume recruitment is much slower and both Raux and H are only
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Figure 3.3: Model output using the set point controls with PLBNP = −10 mmHg.

depending on Pas which is not substantially altered by the decreased venous return to the
heart. Nevertheless arterial pulmonary pressure Pap and therefore cardiac output of the
left heart Q` reflect the lower value of Pvc. However, this is compensated by the increased
inflow resistances to the systemic compartments as well as by the slightly increased heart
rate such that Pas is not affected too heavily. This may not be an exact copy of the typical
reactions to low-level LBNP summarized in the beginning but nevertheless no striking
contradictions to general physiological knowledge can be observed. Thus the set point
controls provide a much more realistic response than the arctan controls.

3.3.3 The optimal control

Employing Algorithm 2.1 with PLBNP = −10 mmHg gives the results depicted in Fig. 3.4.
The red lines show the computed steady state values over time. It should be noted that
lqr finished the simulation without any errors in the occurring algebraic Riccati matrix
equations (2.88) but due to numerical instabilities in the steady state computation (as
explained in Appendix A.2) we see oscillations in Pas as well as Q` and Pap at the onset of
LBNP (ton = 2) which leads to a drop in Rs in the beginning. Though the amount of the
initial decrease in Pas is similar to previous simulations using arctan or set point controls
it takes much longer to steer Pas back to its initial value. However, what immediately
leaps out is that heart rate is not increased nor held constant but decreased by about 36%
until minute 5 and stabilizes at a level 16% lower than in the beginning. This has to be
compensated by a temporary 25%-increase in resistance. Unstressed volume recruitment
is faster than in the set point control case but by far not as rapid as with the arctan
controls and stabilizes at approximately the same level. All this provokes Pvc and Pavc

to be even higher at the end of the simulation than in the beginning. Because of the
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Figure 3.4: Model output (blue) using the optimal control approach with PLBNP = −10 mmHg. Red
lines are computed steady state values.

decreased heart rate after imposing LBNP cardiac output stabilizes at a lower level as
well. Overall these reactions are definitely not typical but at least all variables stay within
physiologically meaningful regions and exhibit changes on a plausible time scale. Thus the
optimal control response can be interpreted to mimic an ’outlier’-reaction to LBNP.

3.4 High-level LBNP

We only consider a LBNP of -40 mmHg here since more severe LBNP stresses have a
significant effect on compliances in the venous system (see for instance [7]). External LBNP
deforms compliant vessel walls so that the nonlinear nature of the pressure-compliance
relationship (as discussed at the beginning of Sec. 2.1.1) becomes important. This means
that compliances are not assumed to be constant parameters but functions of transmural
pressure, i.e. c = c(P − Pbias). However, we assume that at PLBNP = −40 mmHg the
effect of LBNP on compliant vessel walls can be neglected since increasing resistance and
decreasing unstressed volume leads to similar results in this situation (compare [15]). The
typical net reaction to high-level LBNP is comparable to the effects seen under low-level
LBNP but mainly differs in magnitude: central venous pressure drops substantially, arterial
blood pressure slightly decreases, heart rate and resistance increase noticeably and larger
volume shifts occur in the abdomen (compare [19, 7, 12]).
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Figure 3.5: Model output using the arctan controls with PLBNP = −40 mmHg.

3.4.1 The arctan-controls

The simulation of the model using the arctan controls (2.29) under a LBNP of -40 mmHg
is depicted in Fig. 3.5. In contrast to the low-level LBNP case, the swift decrease in
unstressed volume alone is not enough to stabilize the model. Looking at the controls we
immediately see that this level of stress is much more challenging: heart rate and unstressed
volume reach their imposed extremal values Hmax and V min

u , respectively. Unsurprisingly
the drop in Vu is again very fast due to the rapid decrease of Pvc. Note that systemic
resistance grows only slightly. This is due to the fact that the responses of H and Vu

are much faster so that both controls reach their imposed bounds and stabilize the model
before an increase in Rs becomes relevant. Thus the control reaction mainly involves heart
rate and unstressed volume. The vena cava pressure Pvc drops by about 40% and remains
lowered for the rest of the simulation. This explains the decrease in Pap and Q` which
is, however, at least partly compensated by the responses of Vu and H. Despite the fact
that Pas shows a significant 35%-drop at the onset of LBNP as well it can be stabilized so
that it rises to its initial value again. This takes longer than in the low-level LBNP case
and does not show a comparable overshoot after the rebound. Thus the arctan controls
provide a more realistic response to high-level LBNP than for the low-level LBNP case
before. However, there are still some points which need to be remedied: firstly, the rapid
unstressed volume recruitment is still unrealistic; secondly, the increase in resistance is too
modest; thirdly the amount of the initial drop in Pas is questionable.
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Figure 3.6: Model output using the set point controls with PLBNP = −40 mmHg.

3.4.2 The set point controls

Looking at Fig. 3.6 we see that the set point controls can hardly stabilize the model under
this level of LBNP. The vena cava pressure Pvc drops severely (by 90%) in the beginning
and recovers very slowly. Arterial blood pressure decreases dramatically as well at the
onset of LBNP but at least almost reaches its initial value at the end of the simulation.
The counteract to the stress is mainly determined by a rapid increase in systemic resistance
which immediately reaches its overall maximal value (which depends on local upper bounds
on compartmental inflow resistances as determined by eq. (2.19)). Though not as fast,
heart rate grows rapidly to its imposed maximal value as well. However, after about 15
minutes H decreases again since Pas has sufficiently recovered by that time. Nevertheless
Rs remains at its maximum level due to the steeper shape of the underlying sigmoidal
function Rctrl

aux (see Fig. 2.3) but starts decreasing just before the end of the simulation
when Pas has almost completely recovered. Unstressed volume recruitment is again the
slowest control mechanism and shows a larger decrease than in the low-level LBNP case
(as it should be). Pulmonary arterial pressure Pap and hence cardiac output Q` exhibit
(as expected) severe drops as well since venous return to the heart falls dramatically after
the onset of LBNP. The slow recovering of Pvc provokes a slight increase in Pap which
makes Q` growing as well but cardiac output profits especially from the increased heart
rate. Summarizing, the control responses to PLBNP = −40 mmHg are consistent with
physiology. However, the decrease in vena cava pressure is too severe and the drop in Pas

is rarely seen in healthy people and would rather indicate some pathology.
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Figure 3.7: Model output (blue) using the optimal control approach with PLBNP = −40 mmHg. Red
lines are computed steady state values.

3.4.3 The optimal control

The reaction of the optimal control strategy exhibits large differences under the two pre-
sented LBNP levels. In the case of low-level LBNP we saw an though not impossible but
at least atypical reaction. This time (see Fig. 3.7) the controls mimic a rather expected
response: we see a spontaneous increase in heart rate and a pronounced drop in unstressed
volume. Though H does not climb to values comparable to set point or arctan controls we
recall that with PLBNP = −10 mmHg heart rate was even decreasing. Note that except for
the weighting matrices Q0 = C>C and R0 appearing in Algorithm 2.1 we did not impose
any constraints on Vu, Raux or H. As explained in Sec. 3.2 in case of arctan and set point
controls we imposed a lower bound for unstressed volume depending on the blood volume of
the compartments ’ren’ and ’spl’. Thus when using the arctan or set point controls, Vu can
drop at maximum by 34%. Here we see that unstressed volume is lowered by about 44%
which is unrealistic: under the assumption that Vu is recruited only from the splanchnic
region a decrease in unstressed volume of this magnitude would empty abdominal blood
reservoirs. Moreover, this large volume shift has the side effect that systemic resistance
shows no significant response: we see an intial drop (again caused by numerical problems)
then a slight increase which declines promptly so that by the end of the simulation Rs is
lower than in the beginning. However, the optimal control accomplishes its task. We see
that Pas and even the venous pressures Pvc and Pavc drop at the onset of LBNP but can
be recovered so that all three pressures almost attain their initial values. The recovery of
Pvc and Pavc affects Q` and Pap which do not show a similar decrease as with arctan or set
point controls. In summary, the optimal control approach is indeed able to stabilize the
system (note that all depicted quantities are close to their equilibrium values at the end of
the simulation) which was a priori not clear due to the iterative linearization of the model
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(see the discussion at the end of Sec. 2.2.3.5). However, the results are again atypical
compared to physiological expectations: though heart rate shows the expected increase
resistance exhibits almost no reaction (even a decrease) and unstressed volume drops dra-
matically. The latter response is physiologically questionable. However, considering the
time course of Pas, Pvc and Pavc and their corresponding steady state values this obviously
represents an extremely good compensation of the imposed stress.

3.5 Discussion

We want to emphasize that the purpose of the numerical simulations was to give a qual-
itative overview of the three presented controls under orthostatic stress. The choice of
controls investigated here was not random but represents popular techniques currently
used in physiological modeling (see for instance [12, 22, 15, 6]). The model was not val-
idated using experimental data nor a parameter identification was carried out since this
would have gone beyond the scope of this thesis. Thus we want to investigate benefits and
drawbacks when employing these (or similar) controls in comparable lumped compartmen-
tal models.
Clearly the optimal control approach is computationally the most costly whereas arctan or
set point controls are mere ODEs which are solved simultaneously together with the model.
If the controls have to be fit to data the arctan controls (as mentioned in the beginning
of Sec. 2.2) are of limited flexibility since neither slope nor asymptotic values of the arc
tangent can be altered as easily as with the set point controls. On the other hand the
sigmoidal functions (2.30) appearing in the set point controls require detailed knowledge
about the underlying control loops which can be problematic especially if mechanisms are
modeled whose exact mode of operation is not fully understood. These difficulties can be
avoided by formulating given feedback loops as an optimal control problem. However, the
troubles of designing an explicit control gain are then to some extent shifted to choosing
proper weighting matrices for the cost functional.
We have seen that all introduced controls are able to stabilize the CVS model (2.24)
under both low- and high-level LBNP. The simplest control formulation, namely the arctan
controls, have proven to be very robust in both simulations. However, the responses
(especially the unstressed volume recruitment) were in both cases unrealistic. The set point
controls representing a more elaborate but still rather easy-to-handle approach provided
the physiologically most realistic control for low-level LBNP. For PLBNP = −40 mmHg
the response was still physiologically meaningful but the initial drops in Pas and Pvc were
atypically pronounced. The optimal control approach based on Algorithm 2.1, being the
theoretically most complex formulation, showed an atypical but still possible reaction in the
first case. The high-level LBNP simulation using the optimal control was physiologically
unrealistic but mathematically satisfactory: the components of the state vector which were
observed, i.e. Pas, Pvc and Pavc (see eq. (2.82)), were steered to their corresponding steady
state values.
Figure 3.8 provides an overview of the reactions we have seen under low-level LBNP. A
popular though not undisputed hypothesis is that during mild levels of LBNP mainly veno-
atrial baroreceptors are stimulated (compare [6, p. 109]) which hence provokes the reactions
depicted at the beginning of Sec. 3.3. As stated above we see that the set point controls
capture this typical behavior by far at best. However, this should not be interpreted as
evidence of correctness of this hypothesis. We assumed in the case of the explicit controls,
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Figure 3.8: Model output using the arctan controls (blue), the set point controls (black) and the
optimal control (green) with PLBNP = −10 mmHg.

i.e. arctan and set point controls, that heart rate H and sympathetic net activation
Raux depended on arterial blood pressure Pas, whereas unstressed volume recruitment
was assumed to be solely influenced by vena cava pressure Pvc. This is a very rough
simplification of reality based on experimental observations. Such assumptions cannot be
derived from a-priori considerations as was the case in the use of physical principles in the
derivation of relation (2.5), the general mass balance equation of a compartment. Thus
these results cannot give detailed information about physiological facts but they do provide
an indication of plausible correlations.
However, one advantage of using explicit controls is the predictability of results.
In Fig. 3.9 the output of each control for Vu, Rs and H under both levels of LBNP is
depicted. Note that responses of both explicit controls differ mainly in magnitude whereas
the optimal control shows a completely distinct behavior under low- and high-level LBNP.
This emphasizes that the optimal control is from a modeling point of view a ’black box’
meaning the solution of the involved minimization problem, i.e. the control response, is a
priori unknown. In contrast to explicit controls, it is even uncertain if a solution and thus a
control exists. Thus designing an optimal control formulation that produces physiologically
reasonable responses is a very complex and time consuming endeavor.
A compact overview of the reactions of all three controls under high-level LBNP is given
in Fig. 3.10. As mentioned in Sec. 3.4.3 we see that the optimal control decreases Vu

dramatically as compared to arctan or set point controls whereas heart rate and resistance
show only mild responses. It should be noted that we tested various values for the weights
qas, qvc, qavc and r1, r2, r3 appearing in the output matrix C as defined in (2.82) and
the weighting matrix R0 as given by (2.85), respectively. However, the qualitative behav-
ior of the optimal control approach did not change and in some cases even deteriorated.
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Figure 3.9: Output of the arctan controls (top row), the set point controls (middle row) and the
optimal control (bottom row) under low- (blue) and high-level LBNP (magenta).

The response of the optimal control is admittedly physiologically questionable, however,
the three plotted pressures Pas, Pvc and Pavc show a very credible reaction when using
the optimal control as compared to arctan and set point controls. On the other hand
the explicit controls designed based on physiological considerations provide more plausible
responses of Vu, Rs and H but worse results concerning Pas, Pvc and Pavc. Thus there
are obviously some mechanisms lacking which help counteracting orthostatic stress. A
possible remedy may provide the following considerations. At very high stress levels it
becomes important that many controls are to some extent coupled: for instance a decrease
in compliance changes vasculature dimensions leading to a changed stressed/unstressed
volume relationship and influences local resistance which in turn has again some effect on
compliant vessel walls (see for instance [11]). Hence the responses of the controls cannot
be seen completely separated from each other. Moreover it is doubtful if the human body
tries to maintain resting values of arterial and venous blood pressures under very chal-
lenging stresses (compare [15]). However, this is implicitly assumed when using the arctan
or set point controls under very high LBNP levels since both are designed to steer Pas

and Pvc back to P 0
as and P 0

vc or P̂as and P̂vc respectively. Moreover, the steady state tar-
gets for the optimal control were computed using initial values of Pas and Pvc as well (see
Appendix A.2). This fact and the assumption of constant compliances (as discussed at
the beginning of Sec. 3.4) make results obtained by using these or comparable controls
under very high levels of orthostatic stress questionable. Incorporating the complex inter-
dependencies and changing steady state targets of the controls explicitly is very difficult due
to the lack of detailed physiological knowledge in this area (compare the discussion in [15]).
However, it should be possible to compute an equilibrium of the model without a-priori
assumptions on Pas and Pvc: in accordance to the notation introduced in Appendix A.2 let
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Figure 3.10: Model output using the arctan controls (blue), the set point controls (black) and the
optimal control (green) with PLBNP = −40 mmHg.

t̄ denote the actual time step. We treat R0
aux = 0 and V̄u = Vu(t̄) as parameters and take

the current values of arterial pressure P̄as = Pas(t̄), vena cava pressure P̄vc = Pvc(t̄) and
H̄ = H(t̄) to do the calculations depicted in Appendix A.2. Finally we define F̃ : R2 → R2

to be F̃ (P̄as, P̄vc) = F (V̄u, R̄aux). Thus we compute the steady state xtrans by varying Pas

and Pvc instead of Vu and Raux. This approach was tested in the course of implementing
Algorithm 2.1, however, it was numerically extremely unstable and thus did not provide
reasonable results. Finding a possible remedy will most probably require detailed anal-
ysis of the steady state properties of the system and comprehensive testing with various
optimization methods. Nevertheless, when extreme stresses have to be simulated it may
be more convenient (though by far not unproblematic) to use an extended and adapted
optimal control approach.
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A.1 Auxiliary Equations for the CVS model

The systemic compartments ’per’, ’up’, ’ren’, ’spl’ and ’leg’ are connected in parallel to
the arterial systemic compartment (see Fig. 2.1). The inflow resistances (the outflow
resistances are assumed to be constant) of these compartments are subject to sympathetic
vasoconstriction and thus changed dynamically by Raux according to eq. (2.19) which gives

Rin
per = min(R0

per + κperRaux, KperR
0
per),

Rin
up = min(R0

up + κupRaux, KupR
0
up),

Rin
ren = min(R0

ren + κrenRaux, KrenR
0
ren),

Rin
spl = min(R0

spl + κsplRaux, KsplR
0
spl),

Rin
leg = min(R0

leg + κlegRaux, KlegR
0
leg).

(A.1)

Thus we obtain the following inflows by using relation (2.20)

F in
per =

Pas − Pper

Rin
per

,

F in
up =

Pas − Pup

Rin
up

,

F in
spl =

Pas − Pspl

Rin
spl

,

F in
leg =

Pas − Pleg

Rin
leg

.

F in
ren =

Pas − Pren

Rin
ren

,

The compartments ’per’ and ’up’ are connected to the vena cava. We assumed that flows
in the venous part of the systemic circuit are subject to the action of venous valves. Thus
by using relation (2.21) we obtain

F out
per = max(0,

Pper − Pvc

Rout
per

), F out
up = max(0,

Pup − Pvc

Rout
up

).

For renal, splanchnic and legs compartments which are connected to the abdominal vena
cava follows analogously

F out
ren = max(0,

Pren − Pavc

Rout
ren

), F out
spl = max(0,

Pspl − Pavc

Rout
spl

), F out
leg = max(0,

Pleg − Pavc

Rout
leg

).

Finally the flow from abdominal vena cava to vena cava is given by

F out
avc = max(0,

Pavc − Pvc

Rout
avc

).

These equations together with relation (2.22) and the cardiac outputs of the left and right
heart (2.17) represent all flows appearing in the CVS model (2.24). As mentioned in
Sec. 3.2, we want to visualize the effects of vasoconstriction using the total peripheral
resistance Rs rather than Raux. In case of model (2.24) we consider the systemic resistance
to be the total resistance the blood flow has to overcome between arterial systemic and
vena cava compartments (compare Fig. 2.1). Thus we first compute the resistance the
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compartments ’ren’, ’spl’ and ’leg’ exhibit to blood flow using the laws for parallel and
serial resistances

(A.2) Rlower =
1

1
Rin

ren+Rout
ren

+ 1
Rin

spl+Rout
spl

+ 1
Rin

leg+Rout
leg

.

The total resistance of the compartments ’per’, ’up’, ’ren’, ’spl’, ’leg’ and ’avc’ and thus
the systemic resistance is hence given by

(A.3) Rs =
1

1
Rlower+Rout

avc
+ 1

Rin
per+Rout

per
+ 1

Rin
up+Rout

up

.

A.2 Equilibrium Computation

A dynamical system is said to be in steady state if it is not changing over time, or equiva-
lently, if the time derivatives of its state variables are zero. However, setting the right hand
side of (2.24) to zero and treating it as a non linear equation system for the first 13 state
variables (the controls would add three trivial equations 0 = 0) is numerically extremely
unstable and computationally costly. Thus we follow a different approach. We will not
analyze existence or stability of equilibria of the CVS model (2.24) but only provide a way
for computing its stationary points (assuming that they exist). We choose initial values
of arterial and vena cava blood pressures P 0

as and P 0
vc, respectively, as parameters for the

calculation. By using P 0
as and P 0

vc and taking the current values of the controlled quantities
Vu, Raux and H we use steady state relations to get the remaining state variables which
we denote by the superscript ’SS’. These values are used in a numerical computation of an
equilibrium which we denote by xtrans.
Let t̄ be the actual timestep of the simulation and V̄u = Vu(t̄), R̄aux = Raux(t̄) and
H̄ = H(t̄) (as mentioned above we have u = 0 thus Vu, Raux and H are constant). In
steady state we have S̈` = S̈r = Ṡ` = Ṡr = 0 which yields using (2.23)

σSS
` = 0, σSS

r = 0, SSS
` =

β`

α`
H̄, SSS

r =
βr

αr
H̄.

In a stationary situation inflows and outflows to all compartments equalize (otherwise
compartmental pressures would change, i.e. their time derivatives would not be zero).
Thus we compute the total blood flow through the peripheral compartment ’per’ by using
P 0

as and P 0
vc (compare Fig. 2.1)

Fper =
P 0

as − P 0
vc

R̄in
per +Rout

per

,

where we employed R̄aux in relation (A.1) to compute R̄in
per (note that the outflow resis-

tances are constant parameters). Since in steady state total blood flow through a com-
partment equals the inflow to the compartment, Fper obeys the following relation as well

Fper =
P 0

as − P SS
per

R̄in
per

,

and thus we get P SS
per by rearranging terms

P SS
per = P 0

as − FperR̄
in
per.
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Analogously we compute

Fup =
P 0

as − P 0
vc

R̄in
up +Rout

up

,

which yields
P SS

up = P 0
as − FupR̄

in
up.

By employing R̄aux in eq. (A.1) we obtain the current inflow resistances to the compart-
ments ’ren’, ’spl’ and ’leg’ which we use to compute their total resistance to blood flow

R̄lower =
1

1
R̄in

ren+Rout
ren

+ 1
R̄in

spl+Rout
spl

+ 1
R̄in

leg+Rout
leg

,

using relation (A.2). Now we can compute the total blood flow through the abdominal
vena cava compartment

Favc =
P 0

as − P 0
vc

R̄lower +Rout
avc

,

which we use in the outflow-relation of compartment ’avc’ to get

P SS
avc = FavcR

out
avc + P 0

vc.

Having computed the pressure in compartment ’avc’ we are able to compute

Fren =
P 0

as − P SS
avc

R̄in
ren +Rout

ren

, Fspl =
P 0

as − P SS
avc

R̄in
spl +Rout

spl

, Fleg =
P 0

as − P SS
avc

R̄in
leg +Rout

leg

,

which used in the corresponding inflow relations yields

P SS
ren = P 0

as − FrenR̄
in
ren, P SS

spl = P 0
as − FsplR̄

in
spl, P SS

leg = P 0
as − FlegR̄

in
leg.

The total flow in the systemic circuit of the model is

F̄s =
P 0

as − P 0
vc

R̄s
,

where the stationary systemic resistance is given by (using relation (A.3))

R̄s =
1

1
R̄lower+Rout

avc
+ 1

R̄in
per+Rout

per
+ 1

R̄in
up+Rout

up

.

With the same argument as before we conclude that in a stationary situation the following
relation has to hold

(A.4) Q̄` = F̄s = Q̄r = F̄p.

We will use this fact to compute the venous pulmonary pressure. From (A.4) we get the
trivial equation

P SS
vp Q̄` = F̄sP

SS
vp .

We rearrange terms and obtain

P SS
vp =F̄s

P SS
vp

Q̄`

=
P 0

as − P 0
vc

R̄s
·
a`(H̄)P 0

as + k`(H̄) min(SSS
` , P 0

as)
H̄c`a`(H̄) min(SSS

` , P 0
as)

,
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Variable Value Unit
Vu(0) 3.3 `

Raux(0) 0 1
H(0) 78 1/min
P 0

as 87.7 mmHg
P 0

vc 7.5 mmHg

Table A.1: Initial guesses for the controlled quantities and values of P 0
as and P 0

vc.

where we made use of (2.17). Finally we compute the arterial pulmonary pressure by us-
ing all calculated pressures and the currently applied external pressures P̄ bias

ren = P bias
ren (t̄),

P̄ bias
spl = P bias

spl (t̄) and P̄ bias
leg = P bias

leg (t̄) (note that as mentioned in Sec. 3.1 only the com-
partments ’ren’, ’spl’ and ’leg’ are subject to external pressure) in relation (2.26) which
yields

P SS
ap =

1
cup

(
Vtot − V̄u − casP

0
as − cperP

SS
per − cupP

SS
up

− cren(P SS
ren − P̄ bias

ren )− cspl(P SS
spl − P̄ bias

spl )− cleg(P SS
leg − P̄ bias

leg )

−cvcP
SS
vc − cvpP

SS
vp − cavcP

SS
avc

)
.

Computing the stationary cardiac output by using (2.17)

Q̄r = H̄
crP

0
vcar(H̄) min(SSS

r , P SS
ap )

ar(H̄)P SS
ap + kr(H̄) min(SSS

r , P SS
ap )

,

and the stationary pulmonary flow by applying (2.22)

F̄p =
P SS

ap − P SS
vp

Rp
,

we are eventually able to compute xtrans by solving a homogeneous two-dimensional non
linear equation system. Let F : R2 → R2 be given by

F (V̄u, R̄aux) =

( ∣∣F̄s − Q̄`

∣∣2∣∣F̄p − Q̄r

∣∣2
)
.

As stated above in steady state relation (A.4) has to hold. Thus a root of F is a stationary
point of the model (2.24). We assume that F has a root which we denote by (V trans

u , Rtrans
aux ).

By repeating the computations depicted above with V trans
u and Rtrans

aux instead of V̄u and
R̄aux respectively we get the steady state vector xtrans given by

xtrans =(P 0
as, P

trans
per , P trans

up , P trans
ren , P trans

spl , P trans
leg , P 0

vc,

P trans
vp , P trans

avc , Strans
` , σtrans

` , Strans
r , σtrans

r , V trans
u , Rtrans

aux , H̄)>.

The initial guess for the resting steady state xrest corresponding to PLBNP = 0 mmHg and
t̄ = 0 min (i.e. according to relation (3.2) P̄ bias

ren = P̄ bias
spl = P̄ bias

leg = 0 mmHg) is depicted in
Table A.1, Table A.2 shows the calculated steady state values.
The Matlab routine fsolve which is by default a trust-region Powell dogleg method
(see [20] for details) was used to compute a root of F . We imposed P 0

as and P 0
vc as param-

eters for the steady state computation throughout the whole simulation. Thus especially
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Variable Value Unit
P 0

as 87.7 mmHg
P rest

per 12.1 mmHg
P rest

up 7.8 mmHg
P rest

ren 14.2 mmHg
P rest

spl 13.4 mmHg
P rest

leg 14.7 mmHg
P 0

vc 7.5 mmHg
P rest

vp 10.3 mmHg

Variable Value Unit
P rest

avc 8.2 mmHg
Srest

` 59.9 mmHg
σrest

` 0 mmHg/min−2

Srest
r 4.5 mmHg
σrest

r 0 mmHg/min−2

V rest
u 3.4 `

Rrest
aux 18 mmHg

H(0) 78 1/min

Table A.2: Initial steady state xrest. The euclidean norm of F (V trans
u , Rtrans

aux ) is of the order 10−8.

in the case of high-level LBNP the starting point for the numerical computation could not
be guaranteed to be sufficiently close to the exact solution at all times. Hence the non
local convergence properties of the trust-region method were advantageous. However, for
the sake of computational efficiency (and due to the fact that we did not know if an exact
zero of F existed) we did not change standard error tolerances or maximum number of
iterations of fsolve. Thus especially in the transition phase between onset and full inset
of LBNP the computed steady states are of limited accuracy. However, fsolve terminated
always successfully in all simulations. It should be noted that the form of F was not chosen
accidentally: if F does not have a root it can be seen as cost functional of a non linear least
squares minimization problem. If the residual of the computed minimizer is small enough
the computed ’steady state’ can still be meaningful in the context of Algorithm 2.1.
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A.3 Parameters

Parameter Meaning Value Unit

cas Compliance of the arterial systemic compartment 0.002 `/mmHg
cper Compliance of the peripheral compartment 0.008 `/mmHg
cup Compliance of the upper compartment 0.008 `/mmHg
cren Compliance of the renal compartment 0.015 `/mmHg
cspl Compliance of the splanchnic compartment 0.055 `/mmHg
cleg Compliance of the legs compartment 0.019 `/mmHg
cvc Compliance of the vena cava compartment 0.017 `/mmHg
cvp Compliance of the venous pulmonary

compartment
0.0084 `/mmHg

cavc Compliance of the abdominal vena cava
compartment

0.025 `/mmHg

cap Compliance of the arterial pulmonary
compartment

0.0043 `/mmHg

Vtot Total blood volume 5.5 `

c` Compliance of the left ventricle 0.0128 `/mmHg
cr Compliance of the right ventricle 0.0607 `/mmHg
R` Inflow resistance of the left ventricle 11.35 mmHg min/`
Rr Inflow resistance of the right ventricle 4.158 mmHg min/`
κ Coefficient in the eq. for the duration of the

diastole (2.9)
0.05 min1/2

α` Coefficient of S` in eq. (2.18) 89.47 min−2

αr Coefficient of Sr in eq. (2.18) 28.46 min−2

β` Coefficient of H in eq. (2.18) 68.712 mmHg/min
βr Coefficient of H in eq. (2.18) 1.66 mmHg/min
γ` Coefficient of Ṡ` in eq. (2.18) 37.33 min−1

γr Coefficient of Ṡr in eq. (2.18) 11.88 min−1

kLBNP
avc Coefficient determining the impact of PLBNP on

the abdominal vena cava compartment
0.3 1

kLBNP
vc Coefficient determining the impact of PLBNP on

the vena cava compartment
0.3 1

kLBNP
leg Coefficient determining the impact of PLBNP on

the legs compartment
1 1

kren Constant influencing the sequestration of Vu in
the renal compartment

0.1 1

kspl Constant influencing the sequestration of Vu in
the splanchnic compartment

0.9 1

Table A.3: Vascular, cardiac and LBNP parameters

62



A Appendix

Parameter Meaning Value Unit

R0
per Initial inflow resistance at the peripheral

compartment
64.974 mmHg min/`

R0
up Initial inflow resistance at the upper compartment 64.974 mmHg min/`

R0
ren Initial inflow resistance at the renal compartment 68,306 mmHg min/`

R0
spl Initial inflow resistance at the splanchnic

compartment
49,98 mmHg min/`

R0
leg Initial inflow resistance at the legs compartment 59,976 mmHg min/`

κper Parameter influencing the impact of Raux on the
peripheral compartment

0.1 mmHg min/`

κup Parameter influencing the impact of Raux on the
upper compartment

0.1 mmHg min/`

κren Parameter influencing the impact of Raux on the
renal compartment

0.4 mmHg min/`

κspl Parameter influencing the impact of Raux on the
splanchnic compartment

0.4 mmHg min/`

κleg Parameter influencing the impact of Raux on the
legs compartment

0.2 mmHg min/`

Kper Maximal increase in inflow resistance at the
peripheral compartment

1.5 1

Kup Maximal increase in inflow resistance at the upper
compartment

1.1 1

Kren Maximal increase in inflow resistance at the renal
compartment

1.5 1

Kspl Maximal increase in inflow resistance at the
splanchnic compartment

1.8 1

Kleg Maximal increase in inflow resistance at the legs
compartment

1.7 1

Rout
per Outflow resistance at the peripheral compartment 3.831 mmHg min/`

Rout
up Outflow resistance at the upper compartment 3.831 mmHg min/`

Rout
ren Outflow resistance at the renal compartment 4.998 mmHg min/`

Rout
spl Outflow resistance at the splanchnic compartment 2.998 mmHg min/`

Rout
leg Outflow resistance at the legs compartment 4.998 mmHg min/`

Rout
avc Outflow resistance at the abdominal vena cava

compartment
0.166 mmHg min/`

Rp Resistance in the pulmonary circuit 1.965 mmHg min/`

Table A.4: Parameters influencing local resistance
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Parameter Meaning Value Unit

V max
u Upper bound for Vu in the arctan controls (2.29)

and upper asymptote for V ctrl
u given by eq. (2.30)

4.27 `

V min
u Lower bound for Vu in the arctan controls (2.29)

and upper asymptote for V ctrl
u given by eq. (2.30)

2.53 `

Rmax
aux Upper asymptote for for Raux in Rctrl

aux given by eq.
(2.30)

600 1

Rmin
aux Lower bound for Raux in the arctan controls (2.29)

and upper asymptote for Rctrl
aux given by eq. (2.30)

-600 1

Hmax Upper bound for H in the arctan controls (2.29)
and upper asymptote for Hctrl given by eq. (2.30)

120 bpm

Hmin Lower bound for H in the arctan controls (2.29)
and upper asymptote for Hctrl given by eq. (2.30)

40 bpm

c1 Constant in g1(Pvc) given by eq. (2.28) 5 mmHg
c2 Constant in g2(Pas) given by eq. (2.28) 18 mmHg
c̄1 Constant in g1(Pvc) given by eq. (2.28) 5 `/min
c̄2 Constant in g2(Pas) given by eq. (2.28) 18 1/min
P 0

vc Initial guess for Pvc in g1(Pvc) given by eq. (2.28) 7.5 mmHg
P 0

as Initial guess for Pas in g2(Pas) given by eq. (2.28) 87.7 mmHg
P̂vc Predefined set point value of Pvc in V ctrl

u given by
eq. (2.30)

7.5 mmHg

P̂as Predefined set point value of Pas in Hctrl and
Rctrl

aux given by eq. (2.30)
88.7 mmHg

k1 Exponent in V ctrl
u given by eq. (2.30) 7 1

k2 Exponent in Rctrl
aux given by eq. (2.30) 7.5 1

k3 Exponent in Hctrl given by eq. (2.30) 12 1
τ1 Time constant influencing Vu in the set point

controls (2.32)
30 min

τ2 Time constant influencing Raux in the set point
controls (2.32)

2 min

τ3 Time constant influencing H in the set point
controls (2.32)

1 min

Table A.5: Parameters of the arctan and set point controls
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Parameter Meaning Value Unit

qas Weight for Pas appearing in the observation
matrix C given by eq. (2.82)

1 min−2mmHg−1

qvc Weight for Pvc appearing in the observation
matrix C given by eq. (2.82)

0.5 min−2mmHg−1

qavc Weight for Pavc appearing in the observation
matrix C given by eq. (2.82)

0.5 min−2mmHg−1

r1 Upper diagonal element of the weighting matrix
R0 given by eq. (2.85)

500 min−2`−1

r2 Middle diagonal element of the weighting matrix
R0 given by eq. (2.85)

0.0001 min−2

r3 Lower diagonal element of the weighting matrix
R0 given by eq. (2.85)

0.002 min−2bpm−1

Table A.6: Parameters of the optimal control
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