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Introduction

Mathematical modelling plays a key role in modern medicine and the life sciences. In
medicine many processes are not observable via non invasive measurements. Thus mathe-
matical modelling is often the only way to assess underlying mechanisms of complex systems
such as the human cardiovascular system. A wide variation of models is used nowadays to
study physiological phenomena that are very difficult to measure even in experimentally
controllable situations.

Of main interest here is the influence of orthostatic stress on the cardiovascular system.
Studying effects of gravitationally induced hypovolemia on the human body is a wide and
active field of research. Hypovolemia provokes a drop in venous return which leads to
a decrease in arterial blood pressure. This is counteracted by a number of interdepen-
dent control mechanisms which act to stabilize cardiovascular function and recover blood
pressure. Many clinically relevant conditions arise from impaired control responses, e.g.
orthostatic intolerance or postural orthostatic tachycardia syndrome.

A number of different deterministic mathematical models have been proposed to simulate
such effects, all having in common that the short term control response induced by hypo-
volemia has to be quantified in some way. The lack of detailed physiological knowledge
concerning the exact modes of operation of the controls lead to a wide variety in design of
control loops.

In this thesis three control formulations representing popular techniques currently used in
physiological modeling are presented: a straightforward differential equation using the arc
tangent simulating basic correlations, a differential set point equation modelling not only
saturation but also time decays, and an optimal control approach based on considerations
coming from cybernetics. The first two are explicit controls requiring the detailed design
of a control gain. The latter is obtained as solution of a minimization problem.

The basic physiological concepts needed in the context of this thesis together with a descrip-
tion of the most common clinical tests to study the cardiovascular system under orthostatic
stress are presented in Chapter 1. Chapter 2 describes the derivation of a system of non-
linear ordinary differential constituting the mathematical model. In addition the design
of the presented explicit controls is explained and motivated using concepts introduced in
Chapter 1. Finally the background needed to establish the optimal control strategy is given
and applied to the introduced model. Chapter 3 is concerned with numerical simulations
of the model employing each control formulation. The presented results give a qualitative
overview of the three controls under orthostatic stress. The final discussion investigates
benefits and drawbacks when employing these (or similar) controls in comparable lumped
compartmental models. Necessary auxiliary equations, a comprehensive list of all used
parameter (and their values) and a detailed explanation of the steady state computation
of the model (needed for the optimal control approach) is found in the Appendix.



1 Physiological Background

We will give a brief overview of the basic physiological principles regarding the human
cardiovascular system needed in the context of this thesis. The description given here is
based on |26, 6] and [17] but the topics covered can be found in any physiology text book
as well. Following physiological conventions, volumes are given in liters [¢], flows in liters
per minute [¢//min| and pressures in millimeters of mercury [mmHg]. The latter is a non SI
unit using a predefined density of mercury at 0° Celsius and a fixed value of gravitational
acceleration and is thus of limited precision (see for instance [21]).

1.1 Heart and Circulatory System

Every cell in the human body needs a constant supply of oxygen and nutrients and a way
to remove metabolic byproducts (such as carbon dioxide) to ensure proper activity. It
is not possible for a single cell to accomplish this task on its own. Thus a mechanism
is necessary which ensures constant delivery of nutrients and removal of waste products.
In the human body this is done by a complex circulatory system of blood vessels which
makes the exchange of fluids, gases and various metabolic substrates between cells and
the external environment possible. This system is called the cardiovascular system (CVS)
and consists of the heart, blood, and blood vessels. It can be separated into two series-
connected circuits: the systemic circuit and the pulmonary circuit. The systemic circuit
connects the heart to organs and peripheral tissue regions, while the pulmonary circuit
perfuses the lungs. The heart connects both circuits and serves as a pump.

1.1.1 Blood Circulation

A sketch of the circulatory system is depicted in Figure 1.1. The human heart consists of
two pumps in series which we refer to as the left heart and the right heart. The left heart
pumps oxygenated blood into the aorta, the largest artery in the body. The aorta bifurcates
into smaller arteries conducting the blood from the heart to different regions of the body.
The arteries arborize into smaller and smaller branches called arterioles which finally fork
into the smallest vessels, the capillaries. The vessel walls of the capillaries are thin enough
to allow exchange by simple diffusion of nutrients, electrolytes and molecules between blood
and extracellular fluid, the so-called interstitium. This tissue fluid surrounds the cells and
transports materials to and from them. Deoxygenated blood flows from the capillaries into
the venules which conjoin to larger and larger veins. Finally the largest vein in the human
body, the vena cava, brings the blood back to the right heart. From there it is pumped into
the pulmonary circuit which shows essentially the same structure as the systemic circuit.
However, there is one big difference: the pulmonary arteries carry deozygenated blood from
the right heart to the capillary network in the lungs. Here oxygen and carbon dioxide are
exchanged via breathing air and oxygenated blood leaves the capillaries to flow through
the pulmonary venules and veins back to the left heart which completes the loop. The
pressure in the arterial part of the systemic circuit is much higher compared to its venous
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Figure 1.1: Sketch of the CVS. Taken from [2].

part and the whole pulmonary circuit. Thus it is also common to divide the CVS into a
high- and a low-pressure system.

1.1.2 Vasculature

Blood vessels are often characterized by their interaction with the blood flow. Of main in-
terest here are compliance vessels (sometimes also called Windkessel-vessels) and resistance
vessels. The first type of vessels includes the arteries close to the heart which are elastic
to ensure a continuous blood flow despite the pulsating ejection of blood by the heart. If,
for instance, the aorta would have the properties of a steel pipe, the blood stream would
stand still after completion of each heart beat. Instead, the vessel walls are able to expand
and contract helping the pulse wave to evolve smoothly. This is called Windkessel-function
(referring to reservoirs connected to piston pumps). Similar mechanisms make it possible
to shift blood from the venous system (65% of the total blood volume are located in veins
and venules) to other vascular regions. The so-called unstressed volume plays a key role
in such blood transfers. The unstressed volume of a vessel is the volume which fills the
blood vessel without stressing its walls. Accordingly the stressed volume refers to the vol-
ume which when added to the unstressed volume expands the vessel wall. Thus the total
volume of a blood vessel is given by its unstressed volume plus the stressed volume. The
structure of the venous vasculature makes it possible to decrease unstressed volume and
transfer it to stressed volume if needed. Furthermore, larger veins are able to push blood
to the heart by activation of muscle cells surrounding their vessel walls. Additionally small
eversions inside the veins, the so-called venous wvalves, prevent blood from pooling back
into the capillaries.
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The second type of vasculature include arterioles and venules which exhibit quite other
properties. These are resistance vessels which are able to change their diameter via con-
traction or relaxation of muscle fibers located in their walls. A decrease in the diameter
of arterioles called vasoconstriction increases local resistance to blood flow whereas an in-
crease (referred to as wasodilation) decreases local resistance. This makes it possible to
regulate perfusion of body regions. The total resistance presented to the blood flow in the
CVS is called systemic or total peripheral resistance (sometimes also vascular resistance).

1.1.3 The Heart as a Pump

As mentioned above the human heart consists of the left and the right heart which act as
two pumps in series. The right heart sucks in deoxygenated blood from the systemic veins
and pumps it into the pulmonary arteries. From there blood flows to the left heart which
pushes it into the aorta. Each of the two pumps consists of an atrium and a ventricle.
The atria aid in loading blood into the ventricles which pump it into the systemic and
pulmonary circuit, respectively. The pumping is realized by a sudden contraction of the
heart (called systole) which ejects blood out of the ventricles. The heart of a healthy adult
beats around 70 times per minute which gives a heart rate of 70 beats per minute [bpm].
The volume which is ejected at each heart beat by both left and right ventricles is called
stroke volume (about 70-80 milliliters for healthy adults). Heart rate times stroke volume
gives the cardiac output which lies for a resting healthy individual at about 5 liters per
minute.

1.1.3.1 The Cardiac Cycle

At the beginning of the systole the inflow valves to the ventricles (tricuspid valve for the left
and mitral valve for the right ventricle) close and ventricular pressures increase until they
reach arterial pressures (about 80 mmHg in the aorta and ca. 10 mmHg in the pulmonary
artery). This phase is called isovolumetric contraction since until now the ventricular
volumes have not changed. As soon as ventricular pressures equal arterial pressures the
ventricular outflow valves (the aortic valve and the pulmonary valve, respectively) open
and blood is ejected. This is the beginning of the ejection phase in which ventricular
pressures keep increasing (up to a value of about 120 mmHg in the left and 15 mmHg
in the right ventricle). The end of the ejection phase is also the end of the systole and
the heart relaxes. Thus ventricular pressures decrease and the aortic and pulmonary valve
respectively close as soon as ventricular pressures are lower than arterial pressures.

This marks the beginning of the relaxation phase, the so-called diastole: the pressures in
the ventricles decrease down to the pressures in the atria which causes tricuspid and mitral
valve to open. Ventricular volumes were constant until the valves opened thus this phase is
called isovolumetric relaxation. Since the heart muscle continues relaxing after opening of
the inflow valves blood pours from the atria into the ventricles. As soon as the heart starts
contracting again the diastole ends and a new systole begins. A graphical representation
of ventricular pressure and volume during one cardiac cycle is given in Fig. 1.2.
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Figure 1.2: Panel (a) shows variations in pressure (solid) and volume (dashed) during one cardiac
cycle. Panel (b) illustrates the pressure-volume relationship further. Both graphs present
typical volumes and pressures of the left ventricle. Taken from [6].

1.1.3.2 Regulation of Heart Rate and Contraction

The cardiac muscle is able to modulate both contractility (i.e. the heart’s ability to con-
tract) and stroke volume within certain bounds. For instance a rise in the amount of
systemic venous blood flowing to the heart (the so-called venous return) increases ventric-
ular filling and preload (i.e. the end-diastolic filling pressure in the left ventricle). This
causes a stretching of the cardiac muscle which results in a higher contractile force and
thus a larger stroke volume. This effect is called the Frank—Starling law. On the other hand
a suddenly increased afterload (i.e. the end-diastolic aortic pressure) may cause a slight
increase in contractility as well. This mechanism is called Anrep effect, and its exact mode
of operation needs to be clarified. Additionally a higher heart rate makes contractility
grow as well (known as Bowditch effect).

However, besides the heart’s intrinsic regulative mechanisms sympathetic and parasympa-
thetic nervous systems (both part of the autonomic nervous system) play a major role in
controlling the heart as well. Sympathetic influence generally increases cardiac activity,
whereas parasympathetic action decreases it. At rest parasympathetic regulation domi-
nates though sympathetic modulation is active as well. Parasympathetic influence on the
heart is mediated via the vagal nerve which is of major importance in cardiac adaption
to short-term stresses. In case of withdrawal of parasympathetic inhibition heart rate and
contractility grow rapidly and can be increased further by the sympathetic nervous system.
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1.2 Blood Pressure Regulation

If we talk about blood pressure we always refer to arterial blood pressure unless otherwise
stated. In medicine blood pressure is usually given as systolic pressure Pgys (the maximal
pressure in the vessels during the systole) to diastolic pressure Pgi, (minimal pressure
during the diastole; used as measure for the permanent load of the vessels). We will later
on use mean pressures Ppean from which systolic and diastolic pressures can be obtained
by using the empirical formula (see for instance [17])

Pmean:2/3'Pdia+1/3‘Psys-

It should be noted that systolic and diastolic pressures may change without any visible
alteration of mean arterial pressure. However, variations in Psys and Py, are a relevant
input to several blood pressure regulation mechanisms. Thus by using mean pressures
some information about the current state of the system is lost (this issue and a possible
remedy is discussed in [10]).

It is of greatest importance that blood pressure stays within appropriate bounds. Severely
elevated values of pressure harm the heart, brain and the kidneys. If blood pressure is too
low oxygen supply of organs is deteriorated which (in case of a shock) ultimately leads to
multiple organ failure. On the other hand blood pressure has to be adapted to various
stresses such as physical exercise. Thus blood pressure regulation is a complex composite
of mechanisms which differ greatly in effect and functionality. Moreover, these controls act
on different time scales which motivates the classification into short- (responding within
seconds or minutes), mid- (minutes to hours) and long-term regulation (hours and longer).
The main focus here lies on the short term regulation. However, the human body is a closed
system thus all mechanisms are to some extent influencing each other so they should not
be seen as completely separate.

1.2.1 Short-Term Regulation

The most prominent short-term control is the so-called baroreflez-loop which depends on
stretch receptors sensitive to distensions of vessel walls caused by pressure deviations.
These sensors signal blood pressure changes to the brain, namely the medulla oblon-
gata, which stimulates the autonomic nervous system. A combination of sympathetic and

10
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parasympathetic responses alters systemic resistance, cardiac contractility, venous tone
and unstressed volume.

The pressure receptors can be divided into two groups: the arterial baroreceptors found
in the high-pressure system, namely in the aorta and the carotid sinuses, sense arterial
blood pressure. Low-pressure sensors, the cardio-pulmonary baroreceptors, are found in the
atria, the ventricles, the pulmonary arteries and veins and most important the veno-atrial
junction with the vena cava. Figure 1.3 provides an overview of receptor locations. If central
venous pressure (measured at the entrance to the right atrium) decreases, total peripheral
resistance and venous tone are altered to minimize any perturbation of arterial blood
pressure. Thus the cardio-pulmonary sensors monitor cardiac input conditions whereas the
arterial baroreceptors observe the heart’s output. It should be noted that the interaction
and interference of low- and high-pressure sensors is a topic of research.

Another important control loop is the respiratory system. Besides some rather obvious
connections between the CVS and the respiratory system (e.g. the association between
pulmonary perfusion rate, ventilation and blood gas transport) blood pressure regulation
links both systems as well. Chemoreceptors in the carotid and aortic bodies are sensitive to
changes in levels of oxygen and carbon dioxide in the blood. Variations in these blood gases
activate the receptors which alters systemic resistance and heart rate. However, it should
be noted that the chemoreceptors are primarily important when the baroreceptors become
insensitive to pressure changes. This is the case if blood pressure is extremely low and thus
blood gas levels are heavily altered. Finally hydrostatic effects can move interstitial fluid
into the blood circulation to increase blood volume and thus maintain blood pressure.

1.2.2 Mid-Term Regulation

The main control in mid-term blood pressure regulation is the so-called renin-angiotensin-
aldosterone system (RAAS) which is active if the perfusion of the kidneys decreases. Via a
chain of various hormones, angiotensin II is released which induces vasoconstriction. Note
that this loop acts in concordance with the baroreflex.

1.2.3 Long-Term Regulation

Blood pressure regulation on longer time scales is realized by blood volume changes via
the kidney. High levels of blood pressure provoke an increase in excretion of fluid by
the kidneys, called pressure diuresis. This is achieved by several hormonal circuits acting
on renal tissue of which the most important are the decrease in secretion of anti-diuretic
hormone (ADH) in the brain (namely in the hypothalamus), inhibition of the RAAS and
release of atrial natriuretic factor (ANF) in the atria.

1.3 Orthostatic Stress

In supine position the impact of gravity is perpendicular to the body and therefore does
not significantly influence CVS function. Upon standing a hydrostatic force is induced
causing blood to pool in the lower limbs due to gravitational effects. The impact of
these gravitational effects on the CVS is called orthostatic stress. The postural change
from lying to standing up may sound like a trivial challenge, however, the amount of
blood pooling in the lower extremities is about 0.5 liters. This provokes a severe decrease
in arterial blood pressure if not compensated by short-term blood pressure regulation

11
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Figure 1.4: HUT-table (a) and LBNP-chamber (b). Taken from [8].

mechanisms. Thus the body tries to compensate for the imposed stress before CVS function
is impaired: the baroreflex reacts and provokes an increase in systemic resistance, heart
rate and contractility and probably a decrease in venous compliance and unstressed volume.
However, people suffering from orthostatic intolerance or postural orthostatic tachycardia
syndrome (POTS) show only insufficient control responses to orthostatic stress resulting
in a drop in arterial and hence cerebral blood pressure which provokes dizziness or even
syncope and may cause injuries. Thus studying reactions to orthostatic stress is of clinical
relevance and still a field of active research.

A number of clinical tests have been developed to investigate the CVS under orthostatic
stress. These are mainly the sit-to-stand-test, the head-up-tilt (HUT) test and the lower-
body-negative-pressure (LBNP) test. The last two of which are most common since they
provide better experimental controllability. Via non invasive methods at least heart rate
and arterial blood pressure (or more cardiovascular variables) are measured. In the HUT
test a subject lies flat on a tilt-table until a resting steady state is reached. Then the
table is smoothly (within a few seconds) tilted to an angle of 70 degrees or more, see
Fig. 1.4 (a).

In this thesis we focus on the LBNP-test. The subject is placed in supine position on a table
which is partially covered by a tube-like chamber, depicted in Fig. 1.4 (b). This chamber
encloses the subject’s lower body and induces a partial vacuum by exhausting air. Thus
vessels subject to LBNP dilate which provokes a local volume increase and hence reduces
venous return. This leads to a decrease in arterial blood pressure and results in control
responses similar to those seen under stress imposed by gravitational effects. The impact of
LBNP on CVS function depends of course on the magnitude of applied sucking pressure but
also on how much of the subject’s body is exposed to the stress. There exist two standard
protocols: either the LBNP chamber is sealed at the iliac crest (from now on referred to
as ’hips’-case) or the splanchnic region is subject to LBNP as well (the 'ribs’-case). Some
researchers combine LBNP and HUT to provoke severe hypovolemia (i.e. a reduction in
circulating blood volume) even in healthy subjects. It should be noted that LBNP and
HUT are not completely equivalent: HUT applies stress to the CVS by gravitational forces
whereas LBNP creates an artificial negative pressure that sucks on vascular walls. Thus
the observed blood shifts are the same but transmural pressures (i.e. the pressure across

12
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the vessel wall) in the lower limbs differ. This is due to the squeezing of the weight of upper
blood cells on lower cells in upright position. This means that, strictly speaking, LBNP
stress is by definition not a form of orthostatic stress since no gravitational effects are
observed. However, both tests induce a temporary hypovolemia which has a comparable
impact on CVS function. Thus it is common to refer to LBNP stress as orthostatic stress
as well. Moreover, LBNP provides a highly controllable experimental environment which

has been widely and successfully used when studying the impact of weightlessness on the
CVS.

13



2 The Mathematical Model

The human CVS is modeled using a system of ordinary differential equations (ODEs).
The model is mainly composed of three parts: the heart model (developed in [16]), the
vascular components (similar to [12]) and the controls for heart rate, unstressed volume
and systemic resistance. What follows is a short description of the model’s components
and an explanation of the fundamental assumptions that have been made (a very detailed
presentation of central suppositions and techniques in modeling the human CVS can be
found in [6] or [13]).

We use the model to study the behavior of different control strategies when simulating
short-term orthostatic stress. For simplicity baroreflex regulation and local vasoconstric-
tion are considered to be the only control circuits in the body. This means the model lacks a
respiratory control, interstitial volume exchange effects, and any mid- or long-term controls
(such as volume regulation via the kidneys, the RAAS, ADH- or ANF-release as described
in Sec. 1.2). Heart rate, unstressed volume, and systemic resistance are controlled depend-
ing on arterial systemic or central venous pressure. Three different control-approaches will
be discussed in this chapter: two explicit formulations using either first order differential
set point equations or arc tangents and an optimal control strategy.

The heart model that is used is non-pulsatile, that means it computes a mean cardiac
output using mean values of heart rate and stroke volume. Contractility of the left and
right ventricle, respectively (subject to heart rate) is governed by two second order ODEs
simulating the Bowditch—effect.

Blood vessels in the arterial and venous parts of the pulmonary and systemic circuits are
lumped together into compartments. We consider a compartment to be a vessel presenting
no resistance to blood flow. This means the vessel has the ability to dilate and increase its
volume which is quantified by the vessel’s compliance, accordingly we assume these vessels
to be compliance vessels. The volume in the compartment is therefore only determined by
the applied transmural pressure (inside minus outside pressure).

Arterial and venous parts are connected by arterioles and venules, which are also lumped
together into vessels that are considered to be pure resistances to blood flow. Thus these
vessels are only characterized by the flow through them and are therefore supposed to be
resistance vessels.

The arterial and venous vasculature is modeled using ten compartments: arterial systemic
(as), peripheral (per), upper (up), renal (ren), splanchnic (spl), legs (leg), vena cava (vc),
abdominal vena cava (avc), arterial pulmonary (ap) and venous pulmonary (vp) compart-
ment. An organizational diagram is depicted in Figure 2.1. The pulmonary circuit is split
into two components (the venous and the arterial pulmonary compartments), whereas the
systemic circuit is separated into eight sections. The arterial systemic compartment rep-
resents basically the aortic root and the aortic branch. Skin and body surface tissue of
the thorax is lumped into the peripheral compartment. The upper compartment contains
the upper limbs. Note that the complex autoregulative effects which govern the brain’s
blood supply are not considered in this model. The kidneys are located in the renal com-
partment, the gastrointestinal system in the splanchnic compartment, and lower body and
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legs in the legs compartment. These are connected in parallel to the first section of the
venous part of the systemic circuit, the abdominal vena cava compartment, representing
large abdominal veins and the vena cava inferior. The last systemic component, the vena
cava compartment, holds the vena cava superior. The pulmonary and systemic circuit are
connected via the heart where the left atrium is assumed to be part of the pulmonary
venous system and the right atrium is supposed to be located in the abdominal vena cava
compartment (see Fig. 2.1).

2.1 Derivation of the model

In this section the basic elements of the model will be deduced from general physical and
special physiological considerations. A very detailed description using a similar approach
can be found in [6, 13|, a related model from the viewpoint of electrical circuits is presented
in [12]. A list of all used parameters and their meaning is given in Appendix A.3.

2.1.1 Modelling hemodynamics

As explained above, the volume in a compartment is characterized by its unstressed volume
and the applied transmural pressure, thus we start by formulating a basic pressure volume
relationship. Let V denote the total compartmental volume, c¢ its compliance, P the
transmural pressure and V, its unstressed volume. For simplification we use a linear relation
of the form

(2.1) V =cP+V,.

We assume a constant compliance ¢, however, in reality the compliance depends on the
pressure P, i.e. ¢ = ¢(P) and the general pressure volume relation is nonlinear (see for
instance [6, p. 7], [9] or [15]). If P = 0 then V = V;, thus c¢P represents the compartment’s
stressed volume. Let P be the pressure within the compartment and P;,s be the external
(atmospheric or LBNP) pressure. Then the transmural pressure P can be written as

P = P — Pyjas, thus eq. (2.1) reads
(2.2) V = ¢(P — Pyias) + Vau.

The flow in the resistance vessels between compartments is depending on the pressures in
the adjacent compartments and on the resistance to blood flow. Applying Ohm’s law gives

-Pin - Pout
2.3 F=—
(23) -
where F denotes the flow, P, the inflow-, Py the outflow-pressure and R the Ohmic
resistance.
The hemodynamics of the system are obtained by looking at the change of compartmental
volumes over time. Mass balance considerations imply

d

2.4 *V:Fin_Foua
(2.4) - t
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where Fj, denotes the flow into and Fyy,¢ the flow out of the compartment. Assuming that
the following quantities are time dependent (whereby state dependencies are ignored)

P=P(),
Pbias :Pbias (t),
Vi =Va(t),

combining relations (2.2) and (2.4) yields

d d d
C (dtp — dthiaS> + @Vu — En - Fouta

or equivalently
.1 . )
(25) P = E(E — Fout + cPhias — Vu)a
which is the general equation used to describe hemodynamic changes in a compartment.

2.1.2 A non pulsatile heart model

By looking at the filling process and the ejection phase in the ventricles of the heart, a
model for cardiac output can be derived (see [6, Sec. 1.1.2] or [16] for details). The inflow
into the ventricle can be obtained using a similar approach as with inter-compartmental
flows (see Sec. 2.1.1): looking at the time course of the ventricle’s volume V'(t) (see
Fig. 1.2), we introduce the end-diastolic volume Vjj.st and assume that the end-systolic
volume Vs of the current heart beat is the same as of the previous heart beat, thus
V(0) = Viyst. Let Py, be the venous inflow pressure which is assumed to be constant during
the diastole, P(t) the pressure in the ventricle and R the ventricle’s total resistance to the
inflow. Then the flow into the ventricle (i.e. the change of the ventricular volume over
time) is governed by laws of mass balance, thus we obtain the initial value problem

{V — L(P, = P(1)),

(2.6) V(0) = Vi

Assuming that the compliance ¢ of the relaxed ventricle is constant during the diastole
and the external pressure applied to the ventricle is zero, the pressure volume relationship
(2.2) can be used to model the relaxed ventricle’s volume:

(2.7) V(t) = cP(t) + Vo,

where V denotes the ventricle’s unstressed volume. Using relation (2.7) in eq. (2.6) and
integrating gives

(2.8) V() = Vigste 7 4 (cPy + Vi) (1 — e BT,

Bazett’s formula (see [6, p. 10]) is used to compute the duration of the systole ts(H),
where H denotes the heart rate: let x € [0.0387,0.0516] then
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With ¢4(H) denoting the duration of the diastole it has to hold that ¢4 +ts = 1/H, thus

(2.9 () = = = )

And we have using (2.8) at t =t

(2.10) Vitiast = V (ta) = k(H)Vayst + (cPy + Vo)a(H),
with

(2.11) k(H) = e (B tall)  and  a(H) =1 — k(H).

The Frank—Starling mechanism (the higher the end-diastolic volume, the higher the con-

tractility in the systole) can be modeled by the formula

(212) Vi = St = T6)
a

where Vg, denotes the stroke volume, S the ventricle’s contractility and P, the after-load.
Furthermore, the stroke volume obeys

(213) Vstr = Vdiast — ‘/éyst'

Equations (2.10), (2.12) and (2.13) together form a linear equation system for Vijast, Vayst
and V. Solving for the volumes yields

ca(H)P,S
2.14 o = :
(2.14) Ve = 0 B+ (DS
ck(H)P,S
2.1 iast — Pv - )
(2.15) Vaiast =P +V0 =y b 10
cP,S
syst — Pv - .
Vayse =¢Pe +Vo = b R DS

From now on we assume Vg = 0. For ensuring that
Viyst < Vidiast
or equivalently (using (2.14) and (2.15))
cPya(H)S < a(H)P,cP, or S <P,
we introduce the minimum function min(.S, P) in (2.14) which yields

cPya(H) min(S, P,) $>0
a(H)P, + k(H) min(S, P,)’ -
Let the subscripts '’ and 'r’ denote the left and right ventricle respectively. Furthermore
let ap(H), ke(H) and a,(H), k.(H) be the variables introduced in (2.11) with ¢ = ¢,
R = Ry and ¢ = ¢;, R = R;. The pre-load P, to the left and right ventricle, respectively
is the venous pulmonary pressure P, and the vena cava pressure Py, respectively. The

‘/str =
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after-load P, is given by the arterial systemic pressure P,s and the arterial pulmonary
pressure Py, (see Fig. 2.1). Thus we obtain the stroke volumes

CZPVpCLZ(H) min(Sg, Pas)
ag(H)Pas + k¢(H) min(Sp, Pas)’
crPocar(H) min(Sy, Pap)
ar(H)Pap + ke (H) min(Sy, Pap)

‘/;tr,l =
(2.16)
Vétr,r =

The cardiac output @y of the left heart and @, of the right heart is given by heart rate
times stroke volume. Thus

coPypag(H) min(Sy, Pas)
ag(H)Pys + k¢(H) min(Sy, Pas)’

e Pocar(H) min(Sy, Pap)
ar(H)Pap + kv (H) min(Sy, Pap)

Qe=H

(2.17)
Qr=H

Finally a ventricle’s contractile forces have to be determined to calculate cardiac output.
In general, the contractility of a ventricle is influenced by the autonomic nervous system
via baroreflex responses and by the heart rate H (compare Sec. 1.1.3.2). For simplification
we only consider the dependency on H, i.e. the Bowditch effect, since a control for H
will be used to simulate the action of the baroreflex. The influence of H on S; and S; is
modeled using the following second order ODEs

Se 4 76Sp + apSy =B, H,

(2.18) . .
Sy + 'YrSr + a.S; =06 H,

with positive constants oy, ay, B¢, By, 7¢ and . It can be shown that solutions of (2.18)
are asymptotically stable for constant values of H and in steady state changes in H provoke
aligned changes in Sy and S, (see also [6, p. 13]).

2.1.3 Incorporating controls

In order to obtain a complete model, the impact of the controls for heart rate H, unstressed
volume Vj, and systemic resistance Rg on the system has to be quantified. The relation
of heart rate and contractility was explained in the previous section, thus here only the
effects of V,, and Ry are considered.

Under orthostatic stress sympathetically induced vasoconstriction is one of the counter
measures the body takes to prevent a drop in arterial pressure (see Sec. 1.3). However,
local control mechanisms may react to global increases in resistance by vasodilation ac-
cording to metabolic demands in the tissue (see for instance [6, Sec. 3.1.1]). This can
be seen as maximal tolerable increase in local resistance (a similar approach was taken
in [11]). Let Ricrémp be the inflow resistance to the compartment ’comp’, where ’comp’
stands for the systemic sections ’'per’, 'up’, 'ren’, ’spl’ and ’leg’. Furthermore let R,,x be
an auxiliary variable which to some extent quantifies sympathetic net activation, Rgomp
the initial compartmental inflow resistance and Kcomp determine the maximal sustainable

local resistance increase which is assumed to be constant. We define

(2.19) R

s 0 0
comp mln(Rcomp + KcompRauX7 KCOmpRcomp)J
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where Kcomp regulates the distribution of the net increase in resistance over the compart-
ments. The inflows to the compartments ’per’, "up’, ren’, 'spl’ and ’leg’ are given by

; Pn— P,
(2.20) Fibpy = ————
Rcomp

Flows out of a compartment are computed according to (2.3) with the addition that the
effect of venous valves is included using a maximum formulation

Py — P,
t 1 out
(2:21) Feomp = max(0, m)a

where Rggﬁlp denotes the outflow resistance (which is in contrast to the inflow resistance
assumed to be a constant parameter) of compartment 'comp’, where 'comp’ stands for
‘per’, 'up’, 'ren’; ’spl’, 'leg’ and ’avc’. The pulmonary flow is assumed to be neither altered
by sympathetic vasoconstriction nor by effects of venous valves thus

P., — Pyp
(2.22) F, = R
For a full list of all flows and resistances, see Appendix A.1. Another volume shift is present
by the change in unstressed volume V,, which is included in a compartment’s general
hemodynamical equation (2.5). However, since unstressed volume is mainly recruited from
the abdominal region (see for instance [6, p. 145]) we assume a constant unstressed volume,
i.e. Vy =0 in all compartments except for ren’ and ’spl’.
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2.1.4 Setting up the complete model

For connecting the introduced parts to obtain a single model we have to transfer the second
order ODE-model for the Bowditch effect (2.18) into first order ODEs introducing two new
variables oy and o, such that

00 =S¢, G0 =— Sy — Yeo0 + BeH,

Oy :Sr, é—r :_arsr _7r0r+ﬁrH~

Using (2.5), (2.17), (2.20), (2.21), (2.22) and (2.23) the full model is given by the following
system of ODEs

(2.23)

1

> in in in in in 5bi
Pas :Cias(QK - (Fper + Fup + Fren + Fspl + Fieg) + CaSPasas)7
5 1 in out Sbias
Pper :C (Fper - Fper + Cpeerer )7
per
. 1 . Lo
Pup =—(Fyp = Fip" + cupPy™®)
up
. 1 . o .
Pren :C (Frléln - ‘Froe-%t + Crenprbeﬁs - krenVu)’
ren
. 1 . s .
Papi =C—1( = FOi 4 cspl PO — kap Vi),
Sp
5 1 in out Sbias
Pleg :?(F‘leg - Fieg + Cleg leg )7
cg
. 1 Co
(2.24) Pyc :7(F3V0+Fg;t+Fggt - QrJFCch\lz)clas)a
ve

) 1 »
Pyp :C*(Fp — Q¢+ Cvppx?ﬁas)a
vp

. 1 "
t t t b
S S R
Cavc
Sy =0y,

op = — oSy — Yoy + BeH,

S, =0y,
oy = — apSy — o + Gp H,
Va =u1,
Raux =uz,
H =us,

where kren and kgp) regulate the sequestration of unstressed volume and w;, 7 = 1,2,3 are
the control responses. Note that there is no equation for P,,. This is due to the following
fact: the initial assumption was that there is no exchange of liquid between vessels and
intercellular space, thus the total blood volume Vi is given by

V:cot = Cas(Pas - P;)Sias> + Cper(Pper - Pbias) + CUP(PUP - Plllgpi)as)

per

+ Cren(Pren = Ban™) + Cspt(Fepl — sbpilas) + Cleg(Pleg — 12?3)
+ CVC(Pvc — P\Pcias) + Cvp<PVp _ P\E)ias) 4 CaVC(PaVC o Pbias)

ave
+ cap(Pap = Pay™) + Va,

(2.25)
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which can be used to get an explicit formula for P,p:

1 -
Pap = (Vtot - Vi - Cas(Pas — P;)Slas)
Cap
(226) N Cper(Pper o PIE;?S) - Cup(Pup - Pl}lmas) - Cren(Pren - Pglr?s)
N CSPI(PSPI o ;)F)ilas) B Cleg(Pleg - l];igas) — Cyc (Pvc - P\Pgas)

avce

—Cvp(PVp - P\Pias) - Cavc(Pavc - Pbias)) + P;);i)as‘

Now let u(t) = (uq(t), U2(t)au3(t))T and
xr = (Pas’ Ppera Pup7Prena PSpl? Pleg’ PVC7PVpa Pavc, Sf, Oy, Sr; Or, VU7 RaUX7 H)T c R16

be the state vector of the system. Then the model can be written compactly as

(2.27)

with initial conditions 2 at time ¢ = t (we will assume to = 0) and the coordinates of
F given by (2.24).

2.2 The controls

As mentioned above three different control formulations for Vi, R.ux and H will be in-
corporated into the model to test their behavior under simulated orthostatic stress. The
first one is a basic arctan-approach (a related model using these controls was presented
in [11]) which is easy to use and implement but is of very limited adaptivity (for details see
Sec. 2.2.1). The second formulation is a differential set point equation (Sec. 2.2.2). It
has the advantage over the arctan-controls that the shape of the control response can be
designed in more detail due to more adjustable parameters. However, the number of pa-
rameters is also a drawback since those have to be estimated if the model is fit to data.
The last approach is an optimal control formulation. Without explicitly designing a control
gain we will show how a stabilizing control that simulates counteractions of the CVS under
orthostatic stress can be obtained (Sec. 2.2.3). However, it is rather complicated to set up
and the model has to meet some additional requirements compared to the arctan- or set
point controls.

2.2.1 The arctan-controls

Corresponding to [12] we consider the inputs to the arterial and cardiopulmonary barore-
flex to be P, and P, respectively. We assume that the arterial baroreflex only alters
systemic resistance and heart rate, whereas information from the venous receptors only
influences unstressed volume recruitment. The baroreflex is a negative feedback loop thus
the responses have to be designed such that low levels of P,g or P, provoke actions which
result in an increase in those pressures and vice versa. This is realized by subtracting
initial resting steady state values PY, = Pas(0) and P, = Py.(0) from the current values of
P, and P, respectively, scaling it by positive constants ¢; and co and generating control
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g, (P,)
g, (.)

-20 . . . .
50 60 70 80 90 100

Figure 2.2: Response of g1(Puwc) (a) and g2(Pas) (b) from (2.28) with P = 87.7 mmHg, PJ, = 7.5
mmHgand ci =¢ =5, co=¢ =18

responses by using the sigmoidal shaped arc tangent. Thus deviations of P,s and P, from
PY. and P2, respectively are counteracted:

: Py — P2
Vu =¢; arctan <M> ,
€1

. P — P°
Roux = — G arctan <M ,
C2

. P,y — P
H = — G arctan (M) .

2

This approach as well as the values of the constants ¢, ¢, ¢; and ¢p were taken from [12]
(however, there the arc tangents are used to generate error signals which are then further
processed to compute baroreflex effects). The right hand sides

PO

(2.28)  g1(Pyc) = ¢ arctan (PVC_VC) and go(P,s) = —C2 arctan (P%—PSS> ,
C1

C2

are depicted in Figure 2.2. Note that controlling V;, means that low levels of blood pressure
are counteracted by recruiting unstressed volume to transfer it to stressed volume, i.e.
decreasing V;,. This explains the changed signs in g;(Pyc).

However, since g1 (Pyc) and go(Pas) directly influence derivatives, i.e. rates of change of H,
V4 and Ry« some maximal and minimal values have to be imposed, otherwise the controlled
quantities would soon reach non physiological values. Therefore we introduce maximal and
minimal heart rates H™® and H™® maximal and minimal unstressed volumes V™8 and
Vi and a maximal sympathetic vasodilational effect RMI. A maximal vasoconstrictional
effect for R,ux is not needed since maximal compartmental resistances are already included
in the local metabolic control (2.19). For ensuring that, for instance, values of H higher
than H™3% can return into the interval [H™® H™aX] if blood pressure increases again after

an initial perturbation of orthostatic stress, the sign of the current value of ga(P,s) has to
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be taken into account as well. Thus using (2.28) we define u(t) from system (2.27) to be

0, fOrgl(PVC) <0OAV, < Vumax7
u; =40, for g1 (Pye) > 0 A Vi > Vin,
91(Pyc), otherwise,
(2.29) wy =10 for ga(Pas) < 0 A Rauyx < R,
g2(Pas), otherwise,
0, for gp(Pas) > 0 A H > H™x,
uz =< 0, for go(Pas) < 0 A H < H™",

g2(P,s), otherwise.

We will from now on refer to (2.29) as arctan controls.

2.2.2 The set point controls

The definition of the arctan controls (2.29) shows that imposing reasonable physiological
bounds on sigmoidal functions can be problematic the more complex a control loop be-
comes. However, sigmoids such as the arc tangent are very well suited to model saturation
effects which are often observed in biomedical applications. One way to use the advantages
of sigmoids is employing differential set point equations. This approach is taken from [22]
where it is used to model autonomic regulation.

Again we make use of ™, fmax jmin jmax and R anq additionally we need RIax
to specify maximal and minimal values of H, V;; and R,ux, respectively. As was the case
for the arctan controls we assume that H and R, are regulated via changes in P,s and
Vy is controlled based on variations in P,.. We define sigmoidal set point functions V!,
R and HM to be

aux

. Pk .
trl _ X Vi
Vuc r (Pvc) _(Vuma _ Vumm) P\l/{Cl _|—c]5‘lfc1 + Vrnm’
(2 30) Rctrl( ) (Rmax _ Rmin) paskz + Rmin
. aux aux aux Palfs,z + ]’jast
| . Pks .
Hctr (Pas) :(Hmax _ Hmln) - as_ + Hmln’
Pad + Pasks

where Pas and PVC are predefined steady state values of P, and P,.. The minimal and
maximal values of Vu, R.ux, and H are chosen such that a preset steady state value V, is
obtained at PVC and Raux and H are obtained at Pas Thus it has to hold that

Vumax 4 Vumin

Ve(Be) =2 T < T,
R Rmax Rmm N
(231) Rgflr)l{(P ) aux ;_ aux __ Rauxa
Hctrl(p ) gmax Hmln I:I
—2 .
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Figure 2.3: The sigmoidal functions V™" (a), Riiit (b) and H"™ (c) defined by (2.30) with Pe = 7.5
mmHg, P.s = 87.7 mmHg and other parameters as given in Appendix A.3.

Note that the maximum and minimum values of V,, R.ux and H are not determined
uniquely by (2.31) which can make parameter identification using experimental data diffi-
cult (parameter identification with a related model using similar controls was carried out
in [5]). The asymptotic values of the sigmoids are given by

Vumax _ Vumin 0+ Vumin — V'umin7 for PVC N 07
ymax _ Vumin

o 1+ Vmin — ymax  for P — oo,

) .
) .

Rmax _ Rmin) 14+ Rmin — Rmax for Pas N 07
) .

(
(
( aux aux aux aux
(
(
(

Vuctrl(PVC) _){

RI — RMin) . RME = RIS for Pay — 00,

aux aux aux ’

Rgﬁi(PaS) - {
HeU(Py) — Hmex — Hmfn) 14 Hm?n = H™,  for Pos — 0,
Hmax _ Hmm) . 0 + Hmm — _H’Il’lln7 fOr Pas N OO,

thus V" is an increasing, RS and H"'! are decreasing sigmoidal functions (see Fig. 2.3).
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Finally the sigmoids given in (2.30) are used in the following ODEs for w(t) from
system (2.27)

—Vu + V&
U =——_—,
1
_ ctrl
(2.32) y — Tt T Hanx.
T2
_H+ Hctrl
W3 =—"—"—"
T3

where 7;, ¢ = 1,2, 3 are time constants influencing how long it takes until the full control
response is reached (see [22]). Note that if minimal and maximal values of V,, Raux and
H are chosen according to (2.31), in steady state, i.e. V; = Vu, Raux = Raux and H = H
the control response is zero, u = 0.

2.2.3 The optimal control

For incorporating an optimal control strategy in the model (2.27) some background from
control theory is required. The basic theoretical principles needed in the context of this
thesis will be briefly presented (following [14, 18, 1] and [23]) to show how they are applied
to the specific problem (similar to [6]).

2.2.3.1 Linearization

Instead of looking at a non linear system such as (2.27) it is often useful to find ap-
proximate solutions of an associated linear model. Let F € C'(R™ x R™ x [tg, t1], R"),
x € CY([to, t1], R"), u € C([to, t1], R™) with m < n and z° be a vector in R". Look at x(t)
satisfying

(2.33) { i(t) =F(a(t),ult),t), —oo<ty<t<t < oo,

z(to) =a°.

Introducing “small” perturbations Z(t), @(t) and Z(tg) we define the neighboring solutions

(2.34) B(t) = z(t) + i (t), to <t <ty
(2.35) at) =u(t) + a(t), to <t <ty
(2.36) t(to) =z(to) + Z(to)

Using (2.56) and (2.68) in (2.33) gives

(2.37) E(t) = @(t) + &(t) = F(a(t) + £(t), u(t) + a(t),t).

A Taylor expansion of F around (z(t),u(t),t) yields

Fla(t) +z(t), u(t) + a(t),t) = F(x(t),u(t), t) + Fu(z(t), u(t), t)z(t)
+ Fulz(t), u(t), t)a(t) + h(t),

where h(t) € R™ is the remainder term and F, € R™*" denotes the Jacobian of F with
respect to = (thus
Ofi

(fa:)z,] = 61']’ ,j=1,...,n,

(2.38)
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where f; denotes the i-th component of F and z; the j-th component of the state vector x)
and F,, € R™*™ the Jacobian of F with respect to u (analogously). Since h(t) can assumed
to be small for small deviations  and @ it is omitted from eq. (2.38). Using (2.37) in
(2.38) (note that F(z(t),u(t)) cancels since (2.33) holds) with A = F, and B = F,, we
obtain the linear system

(2.39) T(t) = Az(t) + Ba(t),

with initial condition Z(tg) (using eq (2.36)). The system (2.39) is called linearized state
differential equation. It can be shown that if the interval [tg,¢1] is finite, the initial per-
turbations (o) and @(tg) are small and the partial derivatives F,, and F,, are close
to the values of x and w from the original system (2.33) solutions of the linearized state
differential equations can be made arbitrarily good approximations to solutions of (2.33)
(see [18, Sec. 1.2.2]). Therefore we will from now on focus on linear systems.

2.2.3.2 Linear state differential systems

We consider a linear state differential system

(2.40) { i(t) =At)x(t) + B(t)u(t), a.e. on €,
z(ty) =aY,

with Q = [to,t1] (—o0 < to < t < t; < o0, tp and ¢; fixed) and relaxed smoothness-
assumptions on A and B, namely A € L*(Q,R™") and B € L%*(Q,R™™). It can be
shown that for a given control u € L?(£2,R™) the state equation (2.40) has a unique
solution x(+) in the sense of Caratheodory. This means x(ty) = z° € R" and z(-) is
absolutely continuous, thus it has a derivative almost everywhere (a.e.) on Q which is in
L2(Q,R™) and z(-) satisfies (2.40) a.e on  (see [14, Sec. 2|). We collect the absolutely
continuous functions mapping from Q to R™ in the set AC(Q,R"), thus z € AC(2,R").
We summarize some basic facts on the solution of linear state differential systems which
will be needed later (see for instance [18, Sec. 1.3]1).

Theorem 1. Let x € AC(Q,R"), 2° € R™ and A € L?(Q2,R™ ™). Then the solution of
the homogeneous system

(2.41) { #(t) =A(t)z(t), a.eon,

x(to) =0,
can be written as
(2.42) z(t) = ®(t,t)z?,

where & € AC(QxQ, R" ™) is the fundamental matrix solution of the homogeneous system
(2.41), i.e. ® is the solution of the matrixz differential equation

%(I)(t,to) —A)D(t ), a.c onQ,

B(to, to) =1I.

! Though the results given there are stated for continuous right-hand sides the extension to L?-functions
is straightforward.
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The fundamental matrix solution has the following properties which will be useful later.

Lemma 2. Let ® be the fundamental matriz solution of the homogeneous system (2.41).
Then ® satisfies

1) ®(-,tp) is non singular a.e. on €.

2) ®(-, )"t = ®(to,-) a.e on Q.
d
3) %i)(to,t)T =—At)T®(to,t)" a.e. on Q.

Though the solution to any homogeneous system (2.41) satisfying the assumptions given
in Theorem 1 is given by (2.42) the fundamental matrix solution is of limited practi-
cal value since it can very seldom be obtained directly in terms of standard functions
(see [18, Sec. 1.3]). However, the fundamental matrix solution has great theoretical bene-
fits of which will be made use of later. If the fundamental matrix solution of the homoge-
neous system is known it is straightforward to give a representation of the solution to the
state differential system (2.40) (compare [18, Sec. 1.3]).

Theorem 3. Let v € AC(Q,R"), 2° € R*, A € L*(Q,R™"), B € L?(Q,R™™) and
u € L*(Q,R™). Then the solution of (2.40) is given by

x(t) = ®(t,to)x(to) +/ O(t, 7)B(T)u(T) dr.

to

2.2.3.3 The finite-time horizon LQR-problem

The finite-time linear-quadratic optimal regulator problem is the task of finding a control
u(-) that drives the linear system (2.40) from any given initial condition 2° to the zero
state, i.e. « = 0, as fast as possible. We formulate this problem using an optimization
approach: we want to minimize some criterion such that z(t;) = 0. There are many ways
to get suitable criteria for this problem. Since we deal with L?-functions a natural criterion
for 2 is to minimize some weighted L2-norm:

t1
(2.43) / z(t) T Q(t)x(t) dt,

to
where Q(t) € R™™" is a weighting matrix. This criterion penalizes overall aberrations of
x from the zero state on the interval 2. The matrix @(-) determines whether deviations
in some components of z are respected more or less (if all components are considered to
be equally important then for all ¢ € Q : Q(¢t) = I). However, minimizing (2.43) can
lead to indefinitely large control responses u(t) (see [18, Sec. 3.3.1]), thus this has to be
compensated by including u in the criterion as well:

t1

(2.44) / ()T Q(t)z(t) + u(t) " R(t)u(t) dt,
to

where R(t) € R™*™ is a weighting matrix too. It may occur that the time interval [to, 1]

is too short to get x(t1) = 0, thus a natural claim is that the system should be as close as

possible to the zero state at the final time ¢ = ¢;. Therefore (2.44) is finally expanded to

/ ! (x(t)TQ(t)x(t) + u(t)TR(wu(t)) dt + z(t1) T Sz(ty),

to
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with S € R™"*™. Before we sum up these considerations in a definition we make some
assumptions on Q(-), R(+) and S which will be needed in the course of deriving the solution
to the depicted problem (taken from [14, Sec. 7]).

Assumption 4.
1) The matriz Q € L*(Q, R™ ™) is symmetric and positive semi-definite a.e. on €.
2) S € R"™" is symmetric and positive semi-definite.

3) R € L?(Q,R™ ™) js symmetric a.e. onQ and there exists a € L*>(Q,R) with a(t) > 0
a.e. on Q and 1/a € L*(Q,R). Furthermore for all v € R™ the following estimate
holds a.e. on Q)

v R(t)o = a(t) [lv